Response of Soil Fungal Community to Drought-Resistant Transgenic Sugarcane.

Front Microbiol

Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.

Published: September 2020

Drought limits crop productivity, especially of sugarcane, which is predominantly grown in the subtropical parts of China. Soil microbes perform a wide range of functions that are important for plant productivity and responses to drought stress, and fungi play an important role in plant-soil interactions. The gene of sugarcane, , is involved in regulating the response to drought stress. In this study, fungal communities of the transgenic (TG) sugarcane variety GN18, harboring the drought-tolerant gene and its corresponding non-TG wild-type (WT) variety, FN95-1702, were investigated in three soil compartments (rhizoplane, rhizosphere, and bulk soil) by assessing the internal transcribed spacer region using Illumina MiSeq. As the soil microbial community is also affected by various environmental factors, such as pH, carbon availability, and soil moisture, we determined the total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents in the rhizoplane, rhizosphere, and bulk soil compartments to explore the associations between soil fungal communities and host plant characteristics. The differences between the soil fungal communities of TG and WT plants were detected. The alpha diversity of TG fungal communities was more correlated to environmental factors than the beta diversity. The abundance of operational taxonomic units (OTUs) enriched in TG root-related area was far more than that in the root-related area of WT plants. Thereinto, more saprotrophs were enriched in the TG root-related area, indicating altered niches of fungal guilds around TG roots. These results revealed that host plant genotype did play a key role for strengthening plant-fungi interaction and enhancing beneficial fungal function in the root-related area (rhizoplane and rhizosphere) of TG sugarcane in order to respond to drought stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530946PMC
http://dx.doi.org/10.3389/fmicb.2020.562775DOI Listing

Publication Analysis

Top Keywords

fungal communities
16
root-related area
16
soil fungal
12
drought stress
12
rhizoplane rhizosphere
12
transgenic sugarcane
8
soil
8
soil compartments
8
rhizosphere bulk
8
bulk soil
8

Similar Publications

Effects of tire wear particles on freshwater bacterial-fungal community dynamics and subsequent elemental cycles using microcosms.

J Hazard Mater

January 2025

Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.

View Article and Find Full Text PDF

Background: Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens.

View Article and Find Full Text PDF

Influence of Kunth Flavonoids on Composition of Soil Microbial Community.

Int J Mol Sci

December 2024

Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.

, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.

View Article and Find Full Text PDF

As sustainable forest management gains increasing attention, comprehending the impact of stand density on soil properties and microbial communities is crucial for optimizing forest ecosystem functions. This study employed high-throughput sequencing in conjunction with soil physicochemical analysis to assess the effects of stand density on soil physicochemical properties and microbial community characteristics in Chinese fir plantations, aiming to elucidate the influence of density regulation on ecosystem services. Our results suggested that changes in soil physicochemical properties and microenvironmental conditions were key drivers of soil microbial diversity.

View Article and Find Full Text PDF

This study investigated soil fungal biodiversity in wheat-based crop rotation systems on Chernozem soil within the Pannonian Basin, focusing on the effects of tillage, crop rotation, and soil properties. Over three years, soil samples from ten plots were analyzed, revealing significant fungal diversity with Shannon-Wiener diversity indices ranging from 1.90 in monoculture systems to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!