Oilseed brassicas stand as the second most valuable source of vegetable oil and the third most traded one across the globe. However, the yield can be severely affected by infections caused by phytopathogens. White rust is a major oomycete disease of oilseed brassicas resulting in up to 60% yield loss globally. So far, success in the development of oomycete resistant Brassicas through conventional breeding has been limited. Hence, there is an imperative need to blend conventional and frontier biotechnological means to breed for improved crop protection and yield. This review provides a deep insight into the white rust disease and explains the oomycete-plant molecular events with special reference to describing the role of effector molecules, secretome, and disease response mechanism along with nucleotide-binding leucine-rich repeat receptor (NLR) signaling. Based on these facts, we further discussed the recent progress and future scopes of genomic approaches to transfer white rust resistance in the susceptible varieties of oilseed brassicas, while elucidating the role of resistance and susceptibility genes. Novel genomic technologies have been widely used in crop sustainability by deploying resistance in the host. Enrichment of NLR repertoire, over-expression of genes, silencing of avirulent and disease susceptibility genes through RNA interference and CRSPR-Cas are technologies which have been successfully applied against pathogen-resistance mechanism. The article provides new insight into Albugo and Brassica genomics which could be useful for producing high yielding and WR resistant oilseed cultivars across the globe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521032 | PMC |
http://dx.doi.org/10.2174/1389202921999200508075410 | DOI Listing |
Sci Rep
December 2024
Experimental and Clinical Research Center, a Cooperation Between Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité - Universitätsmedizin Berlin, Geschäftsführung, Charitéplatz 1, 10117, Berlin, Germany.
Quantitative magnetic resonance imaging (qMRI) involves mapping microstructure in standardized units sensitive to histological properties and supplements conventional MRI, which relies on contrast weighted images where intensities have no biophysical meaning. While measuring tissue properties such as myelin, iron or water content is desired in a disease context, qMRI changes may typically reflect mixed influences from aging or pre-clinical degeneration. We used a fast multi-parameter mapping (MPM) protocol for clinical routine at 3T to reconstruct whole-brain quantitative maps of magnetization transfer saturation (MT), proton density (PD), longitudinal (R1), and transverse relaxation rate (R2*) with 1.
View Article and Find Full Text PDFHum Brain Mapp
November 2024
Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.
Perfusion changes in white matter (WM) lesions and normal-appearing brain regions play an important pathophysiological role in multiple sclerosis (MS). However, most perfusion imaging methods require exogenous contrast agents, the repeated use of which is discouraged. Using resting-state functional MRI (rs-fMRI), we aimed to investigate differences in perfusion between white matter lesions and normal-appearing brain regions in MS and healthy participants.
View Article and Find Full Text PDFLancet
December 2024
Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA; Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA.
Background: The Human Development Index (HDI)-a composite metric encompassing a population's life expectancy, education, and income-is used widely for assessing and comparing human development and wellbeing at the country level, but does not account for within-country inequality. In this study of the USA, we aimed to adapt the HDI framework to measure the HDI at an individual level to examine disparities in the distribution of wellbeing by race and ethnicity, sex, age, and geographical location.
Methods: We used individual-level data on adults aged 25 years and older from the 2008-21 American Community Survey (ACS) Public Use Microdata Sample.
Health Aff (Millwood)
October 2024
Jeffrey Harman, Florida State University.
Phytopathology
September 2024
USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, United States;
The coevolution of virulence reduces the effectiveness of host resistance to pathogens, posing a direct threat to forest species and their key ecosystem functions. This exacerbates the threat to limber pine (), an endangered species in Canada due to rapid declines mainly driven by white pine blister rust (WPBR) as caused by . We present the first report on a new virulent race (designated ) that overcomes limber pine major gene () resistance (MGR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!