In this paper, we derive a nonlinear strain gradient theory of thermoelastic materials with microtemperatures taking into account micro-inertia effects as well. The elastic behaviour is assumed to be consistent with Mindlin's Form II gradient elasticity theory, while the thermal behaviour is based on the entropy balance of type III postulated by Green and Naghdi for both temperature and microtemperatures. The work is motivated by increasing use of materials having microstructure at both mechanical and thermal levels. The equations of the linear theory are also obtained. Then, we use the semigroup theory to prove the well-posedness of the obtained problem. Because of the coupling between high-order derivatives and microtemperatures, the obtained equations do not have exponential decay. A frictional damping for the elastic component, whose form depends on the micro-inertia, is shown to lead to exponential stability for the type III model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544345 | PMC |
http://dx.doi.org/10.1098/rspa.2020.0459 | DOI Listing |
BMC Nutr
January 2025
Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany.
Background: Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT).
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.
Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.
View Article and Find Full Text PDFUpdates Surg
January 2025
Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guo Xue Road, Wu hou District, Chengdu, 610041, China.
Background: Despite the expanding indications for laparoscopic liver resection (LLR), its role in hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) remains unclear. The aim of the current study is to compare the short- and long-term outcomes following LLR and open liver resection (OLR) for HCC with PVTT.
Methods: All HCC patients with PVTT registered for surgery between April 2015 and May 2022 were enrolled.
Eur Arch Paediatr Dent
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Purpose: This systematic review aims to consolidate existing genetic and clinical data on non-syndromic dentinogenesis imperfecta (DI) to enhance understanding of its etiology.
Methods: Electronic databases were searched for genetic familial linkage studies published in English without time restrictions. Genetic familial linkage studies that reported cases of Shield's classifications: DI-II, DI-III or DD-II were included.
Methods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!