A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Halide Mixing and Phase Segregation in CsAgBiX (X = Cl, Br, and I) Double Perovskites from Cesium-133 Solid-State NMR and Optical Spectroscopy. | LitMetric

All-inorganic double perovskites (elpasolites) are a promising potential alternatives to lead halide perovskites in optoelectronic applications. Although halide mixing is a well-established strategy for band gap tuning, little is known about halide mixing and phase segregation phenomena in double perovskites. Here, we synthesize a wide range of single- and mixed-halide CsAgBiX (X = Cl, Br, and I) double perovskites using mechanosynthesis and probe their atomic-level microstructure using Cs solid-state MAS NMR. We show that mixed Cl/Br materials form pure phases for any Cl/Br ratio while Cl/I and Br/I mixing is only possible within a narrow range of halide ratios (<3 mol % I) and leads to a complex mixture of products for higher ratios. We characterize the optical properties of the resulting materials and show that halide mixing does not lead to an appreciable tunability of the PL emission. We find that iodide incorporation is particularly pernicious in that it quenches the PL emission intensity and radiative charge carrier lifetimes for iodide ratios as low as 0.3 mol %. Our study shows that solid-state NMR, in conjunction with optical spectroscopies, provides a comprehensive understanding of the structure-activity relationships, halide mixing, and phase segregation phenomena in CsAgBiX (X = Cl, Br, and I) double perovskites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558408PMC
http://dx.doi.org/10.1021/acs.chemmater.0c01255DOI Listing

Publication Analysis

Top Keywords

double perovskites
16
halide mixing
12
mixing phase
8
phase segregation
8
csagbix double
8
halide
5
perovskites
5
segregation csagbix
4
double
4
perovskites cesium-133
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!