Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
All-inorganic double perovskites (elpasolites) are a promising potential alternatives to lead halide perovskites in optoelectronic applications. Although halide mixing is a well-established strategy for band gap tuning, little is known about halide mixing and phase segregation phenomena in double perovskites. Here, we synthesize a wide range of single- and mixed-halide CsAgBiX (X = Cl, Br, and I) double perovskites using mechanosynthesis and probe their atomic-level microstructure using Cs solid-state MAS NMR. We show that mixed Cl/Br materials form pure phases for any Cl/Br ratio while Cl/I and Br/I mixing is only possible within a narrow range of halide ratios (<3 mol % I) and leads to a complex mixture of products for higher ratios. We characterize the optical properties of the resulting materials and show that halide mixing does not lead to an appreciable tunability of the PL emission. We find that iodide incorporation is particularly pernicious in that it quenches the PL emission intensity and radiative charge carrier lifetimes for iodide ratios as low as 0.3 mol %. Our study shows that solid-state NMR, in conjunction with optical spectroscopies, provides a comprehensive understanding of the structure-activity relationships, halide mixing, and phase segregation phenomena in CsAgBiX (X = Cl, Br, and I) double perovskites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558408 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.0c01255 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!