This work examines a high temperature latent heat storage system, which could find use in future concentrated solar power and other combined heat and power plants. In contrast to lab-based fully charged or totally discharged states, partial load states will be the principal operation states in real-world applications. Hence, a closer look on the partial load states and the effective power rates are worthwhile for a successful implementation of this storage type. A vertical finned shell and tube heat exchanger pipe with a combination of transversal and longitudinal fins is applied. Sodium nitrate with a melting temperature of 306  is used as phase change material and thermal oil serves as heat transfer fluid. Temperatures in the storage and the heat transfer fluid as well as the mass flow are measured for data analysis. The state of charge formulation is based on an enthalpy distribution function, where the latent heat of fusion is spread over a specific temperature range. The data show consistently high power rates for all partial load cycles at any state of charge. The mean power rate for charging is 6.78 kW with an 95.45 % confidence interval of 1.14 kW for all cycles. The discharging power rate is -5.72 kW with a 95.45 % confidence interval of 1.36 kW for all cycles. The lowest power rate is measured for the full cycle at the end of charging/discharging. It is caused by a narrow volume, which is not penetrated by fins, near the perimeter of the cylindrical heat exchanger. The state of charge formulation correlates with the storage capacity and enables state of charge based cycling. With the energy balance of the storage, the data validity is proven and further storage parameters are determined. The energy density is as high as 110 kW h m and a power rate of 2.28 kW m for the finned tube is confirmed. These values are highly promising for further development and application of latent heat storage systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7548805PMC
http://dx.doi.org/10.1016/j.apenergy.2020.115893DOI Listing

Publication Analysis

Top Keywords

latent heat
16
state charge
16
power rate
16
heat storage
12
partial load
12
heat
9
storage
8
power
8
load states
8
power rates
8

Similar Publications

Biophysical effects of croplands on land surface temperature.

Nat Commun

December 2024

Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA.

Converting natural vegetation to croplands alters the local land surface energy budget. Here, we use two decades of satellite data and a physics-based framework to analyse the biophysical mechanisms by which croplands influence daily mean land surface temperature (LST). Globally, 60% of croplands exhibit an annual warming effect, while 40% have a cooling effect compared to their surrounding natural ecosystems.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

This study investigates the fabrication of phase change material-poly(butylene adipate--terephthalate) (PCM-PBAT) composites through melt blending techniques, focusing on the impact of isophorone diisocyanate (IPDI) treatment on carbon nanotubes (CNTs) and (3-aminopropyl)triethoxysilane (APTES) treatment on aluminum nitride (AlN) particles. Analysis of mechanical properties highlights an enhancement in tensile strength with APTES-treated AlN particles, while dynamic mechanical analysis (DMA) reveals an increase in stiffness. Laser flash analysis (LFA) investigation demonstrates a significant increase, up to 325%, in thermal conductivity compared to PCM-PBAT composites without filler.

View Article and Find Full Text PDF

Using eddy covariance data to detect nuclear reactor operational status.

J Environ Manage

December 2024

Nuclear and Engineering Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Monitoring nuclear reactor operations is vital for nuclear safeguards as it ensures that reactors are in compliance with international legal agreements. Validating nuclear facilities and activities, including potential clandestine activities, is currently accomplished by using remotely sensed data from satellites and aircrafts and on-site sampling. However, these techniques are temporally-limited as sampling and interpretation of environmental releases frequently involve labor-intensive, on-site collections.

View Article and Find Full Text PDF

Utilizing heterogeneity of lignin to diminish supercooling of phase change material nano-capsules with high latent heat.

J Colloid Interface Sci

December 2024

Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Basic Research Center of Excellence for Ecological Security, Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Fatty acids, in particular, are valued as phase change materials (PCMs) for their non-toxic, biodegradable nature and thermal stability. However, the leakage and supercooling issues during phase transitions limit their application. Microencapsulation of PCMs, while improving thermal response, often leads to supercooling, complicating temperature regulation and increasing energy consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!