A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioaccumulation and potential ecotoxicological effects of trace metals along a management intensity gradient in volcanic pasturelands. | LitMetric

Bioaccumulation and potential ecotoxicological effects of trace metals along a management intensity gradient in volcanic pasturelands.

Chemosphere

CE3c, Centre for Ecology, Evolution and Environmental Changes, And Azorean Biodiversity Group, University of the Azores, 9501-801, Ponta Delgada, Portugal; Faculty of Sciences and Technology, University of the Azores, 9501-801, Ponta Delgada, Portugal. Electronic address:

Published: June 2021

The particularities of volcanic soils raise the need to better understand the link between soil agricultural management intensity and trace metal bioaccumulation. The Azores are a region characterized by volcanic soils, which were changed in different degrees according to the intensity of the agricultural practices. The main objective of this study was to assess the potential ecotoxicological effects of the trace metals present in volcanic pastureland soils along a gradient of management intensity (i.e., semi-natural, permanent and reseeded), using earthworms (Eisenia fetida) as biological indicators. For this purpose earthworms were exposed during 7, 14, 28 and 56 days to soils from the three types of pastures. At each exposure time, we quantified trace element bioaccumulation (As, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Rb, U, V and Zn) and the activities of superoxide dismutase and acetylcholinesterase in earthworm tissues. Overall, the results showed that the type of pastureland management significantly increased the soil contents in trace metals: V, Co, Ni and Zn in semi-natural pasturelands; As, Cd and Hg in reseeded pasturelands; and, Rb and U in both permanent and reseeded pasturelands. The soil physicochemical properties observed in the reseeded pastureland systems (higher electric conductivity values associated with a moderately acid pH value) modulated the metal bioavailability, from soil to biota, leading to a greater Hg bioaccumulation in earthworm tissues. The long-term exposure (56 days) of earthworms to reseeded pastureland soil was associated with adverse biological effects (intensification of AChE activity and decrease of SOD activity), encompassing key processes such as neurotransmission and antioxidant defence mechanisms in resident soil biota (earthworms). This study point towards the increased importance of semi-natural and permanent pastureland management, over the intensive management (reseeded pasturelands), in favour of more sustainable ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128601DOI Listing

Publication Analysis

Top Keywords

trace metals
12
management intensity
12
reseeded pasturelands
12
potential ecotoxicological
8
ecotoxicological effects
8
effects trace
8
volcanic soils
8
semi-natural permanent
8
permanent reseeded
8
earthworm tissues
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!