In this article, we report a simple approach to stacking micro- and nanoparticle zones by electrokinetically migrating them through moderately confined channels of uniform cross-section. Experiments show the reported pre-concentration process to initiate at the tail end of the zone following its electrokinetic injection, with the stacked region migrating faster than the rest of the sample band. This effect causes the particles traveling in front to merge into the stacked region making it grow both in size and concentration. Because the stacked zone also gradually loses particles from its trailing edge, it eventually disintegrates upon running out of particles at its front end. Nevertheless, enhancements in peak height by over 100-fold were recorded using the reported approach for polystyrene beads with diameters comparable to the channel depth. This enhancement however, exhibited a temporal variation as the particle band migrated through the analysis column reaching a maximum value that depended on the particle diameter, particle concentration, channel depth, electric field strength, electroosmotic mobility, etc. Interestingly, the peak area recorded by the detector remained relatively constant during this particle migration period allowing reliable sample quantitation. Moreover, upon incubating antibody-coated particles against an antigen sample, the peak area for the particle zone was seen to scale linearly with the antigen concentration establishing the utility of the reported focusing phenomenon for chemical/biochemical analysis. The noted stacking technique was further applied to enabling UV absorbance detection of particle zones on microchips which then allowed us to determine the colloidal content in actual natural water samples. .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573205 | PMC |
http://dx.doi.org/10.1016/j.aca.2020.08.019 | DOI Listing |
Int J Pharm
January 2025
School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
Intranasal drug delivery is a promising non-invasive method for administering both local and systemic medications. While previous studies have extensively investigated the effects of particle size, airflow dynamics, and deposition locations on deposition efficiency, they have not focused on the thickness of deposited particles, which can significantly affect drug dissolution, absorption and therapeutic efficacy. This study investigates the deposition patterns of dry powder particles within the nasal airway, specifically examining how factors such as flow rates, particle size, and particle cohesiveness influence deposition patterns and their thickness.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Innovation in Research & Engineering Solutions (IRES), 1000 Brussels, Belgium.
In modern manufacturing environments, pollution management is critical as exposure to harmful substances can cause serious health issues. This study presents a two-stage computational fluid dynamic (CFD) model to estimate the distribution of pollutants in indoor production spaces. In the first stage, the Reynolds-averaged Navier-Stokes (RANS) method was used to simulate airflow and temperature.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Shandong University, Jinan, China.
In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.
View Article and Find Full Text PDFLuminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Materials Engineering, Materials & Energy Research Center, Dezful Branch, Islamic Azad University, Dezfool, Iran.
Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!