Biosurfaces Fabricated by Polymerization-Induced Surface Self-Assembly.

Langmuir

Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.

Published: October 2020

Surface biofunctionalization provides an approach to the fabrication of surfaces with improved biological and clinical performances. Biosurfaces have found increasing applications in many areas such as sensing, cell growth, and disease detection. Efficient synthesis of biosurfaces without damages to the structures and functionalities of biomolecules is a great challenge. Polymerization-induced surface self-assembly (PISSA) provides an effective approach to the synthesis of surface nanostructures with different compositions, morphologies, and properties. In this research, application of PISSA in the fabrication of biosurfaces is investigated. Two different reversible addition-fragmentation chain transfer (RAFT) agents, RAFT chain transfer agent (CTA) on silica particles (SiO-CTA) and CTA on bovine serum albumin (BSA-CTA), were employed in RAFT dispersion polymerization of -isopropylacrylamide (NIPAM) in water at a temperature above the lower critical solution temperature (LCST) of poly-(isopropylacrylamide) (PNIPAM). After polymerization, PNIPAM layers with BSA on the top surfaces are fabricated on the surfaces of silica particles. Transmission electron microscopy results show that the average PNIPAM layer thickness increases with monomer conversion. Kinetics study indicates that there is a turn point on a plot of ln([M]/[M]) versus polymerization time. After the critical point, surface coassembly of PNIPAM brushes and BSA-PNIPAM bioconjugates is performed on the silica particles. The secondary structure and the activity of BSA immobilized on top of the PNIPAM layers are basically kept unchanged in the PISSA process. To prepare permanently immobilized protein surfaces, PNIPAM layers on silica particles are cross-linked. BSA on the top surfaces presents a reversible "on-off" switching property. At a temperature below the LCST of PNIPAM, the activity of the immobilized BSA is retained; however, the BSA activity decreases significantly at a temperature above the LCST because of the hydrophobic interaction between PNIPAM and BSA. Based on this approach, many different biosurfaces can be fabricated and the materials will find applications in many fields, such as enzyme immobilization, drug delivery, and tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c02201DOI Listing

Publication Analysis

Top Keywords

silica particles
16
temperature lcst
12
pnipam layers
12
biosurfaces fabricated
8
polymerization-induced surface
8
surface self-assembly
8
chain transfer
8
pnipam
8
bsa top
8
top surfaces
8

Similar Publications

In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Medical and surgical treatments for cystic echinococcosis (CE) are challenged by various complications. This study evaluates in vitro protoscolicidal activity of piperine-loaded mesoporous silica nanoparticles (PIP-MSNs) against protoscoleces of Echinococcus granulosus. MSNs were prepared by adding tetraethyl orthosilicate to cetyltrimethylammonium bromide and NaOH, and then loaded with PIP.

View Article and Find Full Text PDF

Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.

View Article and Find Full Text PDF

Tuning the Selectivity in the Nonoxidative Alkane Dehydrogenation Reaction by Potassium-Promoted Zeolite-Encapsulated Pt Catalysts.

JACS Au

December 2024

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.

The significance of the nonoxidative dehydrogenation of middle-chain alkanes into corresponding alkenes is increasing in the context of the world's declining demands on transportation fuels and the growing demand for chemicals and materials. The middle-chain alkenes derived from the dehydrogenation reaction can be transformed into value-added chemicals in downstream processes. Due to the presence of multiple potential reaction sites, the reaction mechanism of the dehydrogenation of middle-chain alkanes is more complicated than that in the dehydrogenation of light alkanes, and there are few prior studies on elucidating their detailed structure-reactivity relationship.

View Article and Find Full Text PDF

Size-dependent Nanoparticle Accumulation In Venous Malformations.

J Vasc Anom (Phila)

December 2024

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Objective: The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!