Motivation: microRNAs (miRNAs) are important gene regulators and they are involved in many biological processes, including cancer progression. Therefore, correctly identifying miRNA-mRNA interactions is a crucial task. To this end, a huge number of computational methods has been developed, but they mainly use the data at one snapshot and ignore the dynamics of a biological process. The recent development of single cell data and the booming of the exploration of cell trajectories using 'pseudotime' concept have inspired us to develop a pseudotime-based method to infer the miRNA-mRNA relationships characterizing a biological process by taking into account the temporal aspect of the process.

Results: We have developed a novel approach, called pseudotime causality, to find the causal relationships between miRNAs and mRNAs during a biological process. We have applied the proposed method to both single cell and bulk sequencing datasets for Epithelia to Mesenchymal Transition, a key process in cancer metastasis. The evaluation results show that our method significantly outperforms existing methods in finding miRNA-mRNA interactions in both single cell and bulk data. The results suggest that utilizing the pseudotemporal information from the data helps reveal the gene regulation in a biological process much better than using the static information.

Availability And Implementation: R scripts and datasets can be found at https://github.com/AndresMCB/PTC.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btaa899DOI Listing

Publication Analysis

Top Keywords

biological process
16
mirna-mrna interactions
12
single cell
12
identifying mirna-mrna
8
biological processes
8
cell bulk
8
biological
6
data
5
process
5
pseudotemporal causality
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!