Motivation: microRNAs (miRNAs) are important gene regulators and they are involved in many biological processes, including cancer progression. Therefore, correctly identifying miRNA-mRNA interactions is a crucial task. To this end, a huge number of computational methods has been developed, but they mainly use the data at one snapshot and ignore the dynamics of a biological process. The recent development of single cell data and the booming of the exploration of cell trajectories using 'pseudotime' concept have inspired us to develop a pseudotime-based method to infer the miRNA-mRNA relationships characterizing a biological process by taking into account the temporal aspect of the process.
Results: We have developed a novel approach, called pseudotime causality, to find the causal relationships between miRNAs and mRNAs during a biological process. We have applied the proposed method to both single cell and bulk sequencing datasets for Epithelia to Mesenchymal Transition, a key process in cancer metastasis. The evaluation results show that our method significantly outperforms existing methods in finding miRNA-mRNA interactions in both single cell and bulk data. The results suggest that utilizing the pseudotemporal information from the data helps reveal the gene regulation in a biological process much better than using the static information.
Availability And Implementation: R scripts and datasets can be found at https://github.com/AndresMCB/PTC.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btaa899 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!