Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the widespread use, chlorinated organophosphorus flame retardants (Cl-OPFRs) as a new emerging contaminant have been widely detected in water environments over the last few years. In this study, the degradation of a typical Cl-OPFR, TCEP (tris (2-chloroethyl) phosphate), by electrochemical reduction was investigated. It was found that copper (Cu) foam as the cathode showed more rapid and effective degradation for TCEP, compared to other cathodes. When TCEP was at the low concentrations (0.1 and 1 mg L), its degradation by Cu foam could reach above 95% within 20 min, and the maximum rate constant was 0.127 min-1. TCEP reduction was little influenced by the co-existing humic substance and anions, except Cl. Compared with the reported oxidation methods, electrochemical reduction showed fast and stable degradation for TCEP. For other types of Cl-OPFRs, electrochemical reduction displayed a fast and effective removal for tris (1,3-dichloro-2-propyl) phosphate but lower removal for tris (2-cholroisopropyl) phosphate who possessed methyl units in the branched chains, influencing its reducibility. Based on the product analysis and Fukui function calculation, the bonds of TCEP molecule were found to be gradually broken, and the three oxygen-ethyl-chlorine arms were cleaved one by one. The products including CHClOP (MW = 249.99278 Da), CHClOP (MW = 221.96105 Da) and CHClOP (MW = 188.0002 Da) were detected at 60 min reaction, and those intermediates showed much lower toxicities than TCEP according to the previous report. The findings may provide a promising treatment for Cl-OPFRs removal from aqueous environments and help understand their reductive fate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128515 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!