Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice.

Neuroimage

Institute for Biomedical Engineering, University and ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Switzerland.

Published: January 2021

Hallucinogenic agents have been proposed as potent antidepressants; this includes the serotonin (5-HT) receptor 2A agonist psilocybin. In human subjects, psilocybin alters functional connectivity (FC) within the default-mode network (DMN), a constellation of inter-connected regions that displays altered FC in depressive disorders. In this study, we investigated the effects of psilocybin on FC across the entire brain with a view to investigate underlying mechanisms. Psilocybin effects were investigated in lightly-anaesthetized mice using resting-state fMRI. Dual-regression analysis identified reduced FC within the ventral striatum in psilocybin- relative to vehicle-treated mice. Refinement of the analysis using spatial references derived from both gene expression maps and viral tracer projection fields revealed two distinct effects of psilocybin: it increased FC between 5-HT-associated networks and cortical areas, including elements of the murine DMN, thalamus, and midbrain; it decreased FC within dopamine (DA)-associated striatal networks. These results suggest that interactions between 5-HT- and DA-regulated neural networks contribute to the neural and therefore psychological effects of psilocybin. Furthermore, they highlight how information on molecular expression patterns and structural connectivity can assist in the interpretation of pharmaco-fMRI findings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.117456DOI Listing

Publication Analysis

Top Keywords

effects psilocybin
12
distinct effects
8
psilocybin
7
effects
5
psilocybin exerts
4
exerts distinct
4
effects resting
4
resting state
4
networks
4
state networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!