Interplay between male reproductive system dysfunction and the therapeutic effect of flavonoids.

Fitoterapia

Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China. Electronic address:

Published: November 2020

Male infertility has affected many families around the world. However, due to the mechanism underlying male reproductive system dysfunction are not completely elucidated, the use of drugs for male reproductive system dysfunction treatment only insignificant higher pregnancy outcomes, low-quality evidence suggests that clinical pregnancy rates may increase. Therefore, the focus in the future will be on developing more viable treatment options to prevent or treatment of male reproductive system dysfunction and achieve the purpose of improving fertility. Interestingly, natural products, as the potential inhibitors for the treatment of male reproductive system dysfunction, have shown a good therapeutic effect. Among many natural products, flavonoids have been extensively investigated for the treatment of male reproductive system dysfunction, such as testicular structural disruption, spermatogenesis disturbance and sperm quality decline. Flavonoids have been reported to have antioxidant, anti-inflammatory, immune stimulating, anti-apoptotic, anticarcinogenic, anti-allergic and antiviral activities, investigating for the treatment of male reproductive system dysfunction. In this review, we evaluate the therapeutic effects of flavonoids on male reproductive system dysfunction under different cellular scenarios and summarize the therapeutic strategies of flavonoids based on the aforementioned retrospective analysis. In the end, we describe some perspective research areas relevant to the application of flavonoids in the treatment of male reproductive system dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2020.104756DOI Listing

Publication Analysis

Top Keywords

male reproductive
36
reproductive system
36
system dysfunction
36
treatment male
20
reproductive
9
system
9
dysfunction
9
male
9
flavonoids male
8
natural products
8

Similar Publications

Genetic diversity can influence fitness components such as survival and reproductive success. Yet the association between genetic diversity and fitness based on neutral loci is sometime very weak and inconsistent, with relationships varying among taxa due to confounding effects of population demography and life history. Fitness-diversity relationships are likely to be stronger and more consistent for genes known to influence phenotypic traits, such as immunity-related genes, and may also depend on the genetic differences between breeding partners.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

Given that reproductive physiology is highly sensitive to thermal stress, there is increasing concern about the effects of climate change on animal fertility. Even a slight reduction in fertility can have consequences for population growth and survival, so it is critical to better understand and predict the potential effects of climate change on reproductive traits. We synthesised 1894 effect sizes across 276 studies on 241 species to examine thermal effects on fertility in aquatic animals.

View Article and Find Full Text PDF

Offspring of older breeders frequently show reduced longevity, which has been linked to shorter offspring telomere length. It is currently unknown whether such telomere reduction persists beyond a single generation, as would be the case if germline transmission is involved. In a within-grandmother, multi-generational study using zebra finches, we show that the shorter telomeres observed in F1 offspring of older mothers are still present in the F2 generation even when the breeding age of their F1 mothers is young.

View Article and Find Full Text PDF

The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!