Angiogenesis factors are widely known to promote tumor growth by increasing tumor angiogenesis in the tumor microenvironment, however, little is known whether their intracellular function is involved in tumorigenesis. Here we show that AGGF1 acts as a tumor suppressor by regulating p53 when acting inside tumor cells. AGGF1 antagonizes MDM2 function to inhibit p53 ubiquitination, increases the acetylation, phosphorylation, stability and expression levels of p53, activates transcription of p53 target genes, and regulates cell proliferation, cell cycle, and apoptosis. AGGF1 also interacts with p53 through the FHA domain. Somatic AGGF1 variants in the FHA domain in human tumors, including p.Q467H, p.Y469 N, and p.N483T, inhibit AGGF1 activity on tumor suppression. These results identify a key role for AGGF1 in an AGGF1-MDM2-p53 signaling axis with important functions in tumor suppression, and uncover a novel trans-tumor-suppression mechanism dependent on p53. This study has potential implications in diagnosis and therapies of cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457774 | PMC |
http://dx.doi.org/10.1016/j.canlet.2020.10.014 | DOI Listing |
Arterioscler Thromb Vasc Biol
December 2023
Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.).
Background: Hemangioblasts are mesoderm-derived multipotent stem cells for differentiation of all hematopoietic and endothelial cells in the circulation system. However, the underlying molecular mechanism is poorly understood.
Methods: CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (type II CRISPR RNA-guided endonuclease) editing was used to develop and knockout zebra fish.
Sci China Life Sci
November 2021
Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
Angiogenic factor with G-patch and FHA domains 1 (AGGF1) exhibits a dynamic distribution from the nucleus to the cytoplasm in endothelial cells during angiogenesis, but the biological significance and underlying mechanism of this nucleocytoplasmic transport remains unknown. Here, we demonstrate that the dynamic distribution is essential for AGGF1 to execute its angiogenic function. To search the structural bases for this nucleocytoplasmic transport, we characterized three potential nuclear localization regions, one potential nuclear export region, forkhead-associated (FHA), and G-patch domains to determine their effects on nucleocytoplasmic transport and angiogenesis, and we show that AGGF1 remains intact during the dynamic subcellular distribution and the region from 260 to 288 amino acids acts as a signal for its nuclear localization.
View Article and Find Full Text PDFCancer Lett
January 2021
Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China. Electronic address:
Angiogenesis factors are widely known to promote tumor growth by increasing tumor angiogenesis in the tumor microenvironment, however, little is known whether their intracellular function is involved in tumorigenesis. Here we show that AGGF1 acts as a tumor suppressor by regulating p53 when acting inside tumor cells. AGGF1 antagonizes MDM2 function to inhibit p53 ubiquitination, increases the acetylation, phosphorylation, stability and expression levels of p53, activates transcription of p53 target genes, and regulates cell proliferation, cell cycle, and apoptosis.
View Article and Find Full Text PDFMed Sci Monit
February 2020
Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China (mainland).
BACKGROUND Angiogenic factor with G patch and FHA domains 1 (AGGF1) is a novel identified initiator of angiogenesis through promoting the proliferation of endothelial cells. The continuous angiogenesis plays a key role in the growth, invasion, and metastasis of hepatocellular carcinoma (HCC), while the diagnostic and prognostic roles of AGGF1 for HCC need to be further studied. MATERIAL AND METHODS The mRNA sequencing datasets and clinical features of HCC patients were extracted from The Cancer Genome Atlas database.
View Article and Find Full Text PDFFASEB J
September 2018
Key Laboratory of Molecular Biophysics-Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.
Angiogenic factor with G-patch and FHA domains 1 (AGGF1) is involved in vascular development, angiogenesis, specification of hemangioblasts, and differentiation of veins. When mutated, however, it causes Klippel-Trenaunay syndrome, a vascular disorder. In this study, we show that angiotensin II (AngII)-the major effector of the renin-angiotensin system and one of the most important regulators of the cardiovascular system-induces the expression of AGGF1 through NF-κB, and that AGGF1 plays a key role in AngII-induced angiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!