A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PSMA-targeted nanoparticles for specific penetration of blood-brain tumor barrier and combined therapy of brain metastases. | LitMetric

PSMA-targeted nanoparticles for specific penetration of blood-brain tumor barrier and combined therapy of brain metastases.

J Control Release

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China. Electronic address:

Published: January 2021

Breast cancer brain metastases (BCBM) represent a major cause of morbidity and mortality among patients with breast cancer. Systemic drug therapy, which is usually effective against peripheral breast cancers, is often ineffective on BCBM due to its poor penetration through the blood-brain tumor barrier (BTB). In this study, prostate-specific membrane antigen (PSMA) with internalization function was found to be specifically up-regulated on BCBM-associated BTB while barely detectable in normal blood-brain barrier (BBB). Here, a nanotechnology approach is reported that can overcome the BTB through ACUPA (A) and cyclic TT1 (cT) co-functionalized nanoparticles (A-NPs-cT). A-NPs-cT selectively target PSMA on BTB for specific BTB crossing and specially bind with p32 for BCBM targeting. We disclosed the effectual synergism of doxorubicin (DOX) and lapatinib (LAP) for BCBM combined therapy. A-NPs-cT exhibited boosted uptake than integrin-targeting RGD-modified NPs in BTB endothelial cells and displayed about 4.57-fold stronger penetration through the BCBM-associated BTB as compared to the normal BBB. In vivo studies showed specific BTB crossing, and remission of BCBM and prolonged survival with DOX and LAP combinatorial regimen. A-NPs-cT based DOX and LAP innovative combined therapy envisioned improved therapeutic intervention for clinical management of BCBM, for which surgery is generally inapplicable and insufficient.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.10.023DOI Listing

Publication Analysis

Top Keywords

combined therapy
12
penetration blood-brain
8
blood-brain tumor
8
tumor barrier
8
brain metastases
8
breast cancer
8
btb
8
bcbm-associated btb
8
specific btb
8
btb crossing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!