Cadmium (Cd) is harmful to rice and human, thus screening and understanding the mechanism of Cd-safe rice lines, which accumulate little Cd in brown rice, is necessary. D62B was screened as a Cd-safe rice line with low Cd translocation from roots to shoots, and there must be a switch restricting Cd transport from roots to shoots. Here we found that shoot base played the role as switch. Cd concentration in the shoot base of D62B was 1.57 times higher compared with a high Cd-accumulating rice line (Wujin4B) and lower Cd translocation under Cd stress. Glutathione (GSH) and phytochelatins (PCs) were important in this process. GSH and PCs concentrations in the shoot bases of D62B were 1.01- 1.83 times higher than Wujin4B as well as the glutathione S-transferase (GST) and phytochelatin synthase (PCS) concentrations, keeping in consistent with up-regulation of the genes OsGST and OsPCS1. PCs synthesis was further promoted by exogenous GSH. Our results prove the role of shoot bases as switch for restricting Cd transport in D62B due to its great potential for GSH and PCs biosynthesis, and thereby Cd chelation. This could be considered a key mechanism for low Cd accumulation in brown rice of the Cd-safe rice line.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142710DOI Listing

Publication Analysis

Top Keywords

shoot base
12
cd-safe rice
12
role shoot
8
rice
8
brown rice
8
roots shoots
8
switch restricting
8
restricting transport
8
times higher
8
gsh pcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!