Different fractions of milk nitrogenous compounds (not only caseins) have different effects on the nutritional value of milk, its coagulation and curd firming properties, and its cheese-making efficiency. To assess different sources of variation, especially the cows' breed and genetic variants of the main protein fractions, milk samples were collected from 1,504 cows belonging to 3 dairy breeds (Holstein-Friesian, Brown Swiss, and Jersey) and 3 dual-purpose breeds (Simmental, Rendena, and Alpine Grey) reared in 41 multibreed herds. Beyond crude protein, casein (CN), and urea, 7 protein fractions were analyzed using HPLC, and 5 other N fraction traits were calculated. All 15 traits were measured qualitatively (% of milk N) and quantitatively (g/L of milk). The HPLC technique allowed us to discriminate between the main genetic variants of β-CN, κ-CN, and β-lactoglobulin and thus to genotype the cows for the CSN2, CSN3, and BLG genes, respectively. Data were analyzed using 2 mixed models, both including the effects of herd-date, breed, parity, and lactation stage, and only one also including the effects of the genotypes of the milk proteins. Breed of cow explained 2 to 36% of phenotypic variability for all the N fractions, with the exception of the urea and total casein contents of milk and the urea and β-CN proportions of total milk N. Lactation stage had a considerable influence on the amount (g/L) of almost all the protein fractions in milk, but neither the nonprotein N fractions nor the percentage of milk N protein profile were affected. The inclusion of the CSN2, CSN3, and BLG genotypes in the model explained a large part of the total variability in all the milk protein and nonprotein fractions except urea. It also reduced the variance explained by breed and residual factors. An exception was shown by the proportion of α-CN variance explained by breed that moved from 13 to 28%. Similarly, for amount (g/L) of β-CN, the effect of breed became significant (12%), whereas it was almost null before inclusion of genotypes. In terms of percentage of milk N, the genotypes of CSN3 notably affected all the casein fractions, whereas the BLG genotypes had a much greater influence on most noncasein traits. The genotypes of the CSN2 gene exerted an appreciable effect on α-CN and not β-CN, as expected. Comparing the 2 models, we were also able to discriminate the effect of the breed on a milk N fraction, both quantitatively and qualitatively, in 2 quotas: the first due to the milk protein polymorphisms (major genes) and the second due to other genetic factors (polygene), after correcting for the effect of herd-date of sampling, parity, and lactation stage. The knowledge about the detailed milk protein profile of different cattle breeds provided by this study could be of great benefit for the dairy industry, providing new tools for the enhancement of milk payment systems and breeding program designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2020-18497 | DOI Listing |
Am J Perinatol
January 2025
Novant Health New Hanover Regional Medical Center, Wilmington, United States.
Objective: To compare growth outcomes and tolerance among very low birth weight (VLBW) infants receiving a new, liquid human milk fortifier (LHMF-NEW) or a human milk fortifier-acidified liquid (HMF-AL).
Study Design: Retrospective, multicenter study of 515 VLBW infants in three regional NICUs. The primary objective was to compare growth velocity (g/kg/day) during fortification between groups by repeated measures regression.
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi, PR China.
This study investigates camel milk protein structural dynamics during digestion using Fourier Transform Infrared (FTIR) spectroscopy and Two-Dimensional Infrared (2D-IR) homo-correlation and hetero-correlation analysis. The synchronous 2DIR homo-correlation map reveals that NH bending and C-N stretching vibrations (amide II) are sensitive to digestion, indicating significant impacts on secondary structures. The asynchronous 2DIR homo-correlation indicates a stepwise process, where initial disruptions in NH interactions precede changes in CO stretching vibrations (amide I), highlighting the sequence of structural alterations during protein unfolding and degradation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Animal Science, Jilin University, Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding In Northeastern Frigid Area, Changchun 130062, China. Electronic address:
Excessive copper (Cu) has the potential risk to ecosystems and organism health, with its impact on dairy cow mammary glands being not well-defined. This study used a bovine mammary epithelial cell (MAC-T) model to explore how copper excess affects cellular oxidative stress, autophagy, ferroptosis, and protein and lipid biosynthesis in milk. Results showed the increased intracellular ROS, MDA, and CAT (P < 0.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy.
In recent decades, a general increase in multiple birth (MB) rate has been reported in both dairy and dual-purpose cattle breeds. As there is evidence that MB has negative effects on economically important traits in dairy cows, the aims of this study were to (i) investigate environmental and genetic factors affecting MB rate and (ii) assess the impact of MB on productive and nonproductive traits of the Austrian dual-purpose breeds Pinzgauer and Tyrol Grey. The dataset included 99,141 calvings of 33,791 Pinzgauer and 68,454 calvings of 19,244 Tyrol Grey cows recorded from 2000 to 2022.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Food Science, STELA Dairy Science and Technology Research Center, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, QC, Canada G1V 0A6.
This work aims to evaluate the potential and limits of adhesiveness measurement using a texturometer to assess the ropiness of acid dairy gels for starter selection. Commercial yogurts of various formulations and textures were used to assess the ability of adhesiveness to detect ropiness and to compare performance of different probes. Chemically acidified gels using different concentrations of glucono-delta-lactone (GDL) were tested to determine the effect of pH on adhesiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!