Multiple modulations of supramolecular assemblies from a natural triterpenoid-tailored bipyridinium amphiphile.

J Colloid Interface Sci

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Published: February 2021

As the applications of supramolecular assemblies are ultimately inscribed in their nanostructures, strategies that can precisely fabricate and regulate supramolecular architectures from small molecules are of great importance. Herein, in this research multiple modulations of supramolecular assembled structures of a natural triterpenoid-tailored bipyridinium amphiphile, 1-[2-(methyl glycyrrhetate)-2-oxoethyl]-[4,4']bipyridinium bromide (MGBP), have been achieved by adjusting solvents or counterions. Depending on the polarity of solvents, MGBP assembled into nanofibers, helices, pentagon and hexagon microsheets, respectively. Moreover, the nanofibers in methanol/water can transform into ribbons, robust fibers and fiber bundles by addition of counterions with different ionic sizes and valences. This work presents a simple and feasible methodology to modulate assembly structures of a natural triterpenoid-based amphiphile, which may expand the application of natural products in supramolecular materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.09.125DOI Listing

Publication Analysis

Top Keywords

multiple modulations
8
modulations supramolecular
8
supramolecular assemblies
8
natural triterpenoid-tailored
8
triterpenoid-tailored bipyridinium
8
bipyridinium amphiphile
8
structures natural
8
supramolecular
5
natural
4
assemblies natural
4

Similar Publications

Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.

View Article and Find Full Text PDF

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

Global regulators enable bacterial adaptation to a phenotypic trade-off.

iScience

January 2025

Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France.

Cellular fitness depends on multiple phenotypes that must be balanced during evolutionary adaptation. For instance, coordinating growth and motility is critical for microbial colonization and cancer invasiveness. In bacteria, these phenotypes are controlled by local regulators that target single operons, as well as by global regulators that impact hundreds of genes.

View Article and Find Full Text PDF

Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!