Mechanisms of the enhanced DDT removal from soils by earthworms: Identification of DDT degraders in drilosphere and non-drilosphere matrices.

J Hazard Mater

Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: February 2021

The remediation of soil contaminated by 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) remains an important issue in environmental research. Although our previous studies demonstrated that earthworms could enhance the degradation of DDT in soils, the underlying mechanisms and microorganisms involved in these transformation processes are still not clear. Here we studied the transformation of DDT in sterilized/non-sterilized drilosphere and non-drilosphere matrices and identified DDT degraders using the technique of DNA-stable isotope probing. The results show that DDT degradation in non-sterilized drilosphere was quicker than that in their non-drilosphere counterparts. Earthworms enhance DDT removal mainly by improving soil properties, thus stimulating indigenous microorganisms rather than abiotic degradation or tissue accumulating. Ten new genera, including Streptomyces, Streptacidiphilus, Dermacoccus, Brevibacterium, Bacillus, Virgibacillus, were identified as DDT ring cleavage degrading bacteria in the five matrices tested. Bacillus and Dermacoccus may also play vital roles in the dechlorination of DDTs as they were highly enriched during the incubations. The results of this study provide robust evidence for the application of earthworms in remediating soils polluted with DDT and highlight the importance of using combinations of cultivation-independent techniques together with process-based measurements to examine the function of microbes degrading organic pollutants in drilosphere matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124006DOI Listing

Publication Analysis

Top Keywords

ddt
10
ddt removal
8
ddt degraders
8
drilosphere non-drilosphere
8
non-drilosphere matrices
8
earthworms enhance
8
identified ddt
8
mechanisms enhanced
4
enhanced ddt
4
removal soils
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!