Background: Disturbances in the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axes have been frequently found in major depression. Given that glucocorticoids may inhibit thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) secretion, it has been hypothesized that hypercortisolemia could lead to HPT axis abnormalities. So far, data on interactions between the HPA and HPT axes in depression remain inconclusive.

Methods: In order to investigate this issue, we examined circadian rhythms of serum TSH and cortisol (sampled at 4 -hly intervals throughout a 24 -h span), TSH responses to 0800 h and 2300 h protirelin (TRH) tests and cortisol response to dexamethasone suppression test (DST) in 145 unmedicated inpatients meeting DSM-IV criteria for major depressive disorder (MDDs) and 25 healthy hospitalized control subjects (HCs).

Results: The secretion of TSH and cortisol exhibited a significant circadian rhythm both in HCs and MDDs. However, compared to HCs, MDDs showed: 1) reduced TSH mesor and amplitude values; 2) blunted 2300 h-ΔTSH and ΔΔTSH values (i.e. differences between 2300 h and 0800 h TRH-TSH responses); and 3) increased cortisol mesor and post-DST cortisol values. DST nonsuppresssors (n = 40, 27 %) showed higher cortisol mesor than DST suppressors (n = 105, 73 %). There was no difference between DST suppressors and nonsuppressors in their TSH circadian parameters and TRH-TSH responses. In addition, cortisol values (circadian and post-DST) were not related to TRH test responses.

Conclusion: Our results do not confirm a key role for hypercortisolemia in the HPT axis dysregulation in depression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2020.104831DOI Listing

Publication Analysis

Top Keywords

hpt axis
8
tsh cortisol
8
hcs mdds
8
trh-tsh responses
8
cortisol mesor
8
cortisol values
8
dst suppressors
8
cortisol
7
tsh
6
thyroid adrenal
4

Similar Publications

Association of diethylhexyl phthalate exposure with serum thyroid hormone levels: a systematic review and meta-analysis.

Am J Transl Res

December 2024

Department of Genetics and Endocrinology, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China.

Objective: Evidence suggests that diethylhexyl phthalate (DEHP) may disrupt thyroid hormone homeostasis by targeting multiple components of the hypothalamic-pituitary-thyroid (HPT) axis, potentially harming human health. However, the relationship between DEHP exposure and thyroid function remains debated. We performed a meta-analysis to clarify the association between DEHP exposure and thyroid function.

View Article and Find Full Text PDF

Food intake and the HPT axis in the cichlid fish: The implications of the gut-brain peptide cholecystokinin.

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India. Electronic address:

This work aimed to investigate the response of cholecystokinin (CCK) to starvation and its impact on food intake and the reproductive axis of the tilapia Oreochromis mossambicus. The fish subjected to 21 days of starvation showed a significant decrease in CCK immunoreactivity in the hypothalamus, pituitary gland, and intestine. The administration of injections of 0.

View Article and Find Full Text PDF

A weight of evidence review on the mode of action, adversity, and the human relevance of xylene's observed thyroid effects in rats.

Crit Rev Toxicol

January 2025

Product Stewardship, Science & Regulatory, Shell Global Solutions International B.V. The Hague, the Netherlands.

Xylene substances have wide industrial and consumer uses and are currently undergoing dossier and substance evaluation under Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) for further toxicological testing including consideration of an additional neurotoxicological testing cohort to an extended one-generation reproduction toxicity (EOGRT) study. New repeated dose study data on xylenes identify the thyroid as a potential target tissue, and therefore a weight of evidence review is provided to investigate whether or not xylene-mediated changes on the hypothalamus-pituitary-thyroid (HPT) axis are secondary to liver enzymatic induction and are of a magnitude that is relevant for neurological human health concerns. Multiple published studies confirm xylene-mediated increases in liver weight, hepatocellular hypertrophy, and liver enzymatic induction the oral or inhalation routes, including an increase in uridine 5'-diphospho-glucuronosyltransferase (UDP-GT) activity, the key step in thyroid hormone metabolism in rodents.

View Article and Find Full Text PDF

Since the early discovery of QRFP43, intensive research has been primarily focused on its role in the modulation of food intake. As is widely recognised, the regulation of the body's energy status is a highly complex process involving numerous systems, hormones and neurotransmitters. Among the most important regulators of energy status, alongside the satiety and hunger centre located in the hypothalamus, is the HPT axis, which directly and indirectly affects the regulation of metabolism in all cells of the body.

View Article and Find Full Text PDF

Endocrine-disrupting chemical, methylparaben, in environmentally relevant exposure promotes hazardous effects on the hypothalamus-pituitary-thyroid axis.

Mol Cell Endocrinol

December 2024

Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil. Electronic address:

Methylparaben (MP) belongs to the paraben class and is widely used as a preservative in personal care products, medicines, and some foods. MP acts as an endocrine disrupting chemical (EDC) on the hypothalamic-pituitary-thyroid (HPT) axis. However, the effects of MP have not yet been completely elucidated, as published results are scarce and controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!