Metagenomic insights into the antibiotic resistome of mangrove sediments and their association to socioeconomic status.

Environ Pollut

Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala, 671320, India. Electronic address:

Published: January 2021

Mangrove sediments are prone to anthropogenic activities that could enrich antibiotics resistance genes (ARGs). The emergence and dissemination of ARGs are of serious concern to public health worldwide. Therefore, a comprehensive resistome analysis of global mangrove sediment is of paramount importance. In this study, we have implemented a deep machine learning approach to analyze the resistome of mangrove sediments from Brazil, China, Saudi Arabia, India, and Malaysia. Geography (R = 39.26%; p < 0.005) as well as human intervention (R = 16.92%; p < 0.005) influenced the ARG diversity. ARG diversity was also inversely correlated to the human development index (HDI) of the host country (R = -0.53; p < 0.05) rather than antibiotics consumption (p > 0.05). Several genes including multidrug efflux pumps were significantly (p < 0.05) enriched in the sites with human intervention. Resistome was consistently dominated by rpoB2 (19.26 ± 0.01%), multidrug ABC transporter (10.40 ± 0.23%), macB (8.84 ± 0.36n%), tetA (4.13 ± 0.35%), mexF (3.26 ± 0.19%), CpxR (2.93 ± 0.2%), bcrA (2.38 ± 0.24%), acrB (2.37 ± 0.18%), mexW (2.19 ± 0.17%), and vanR (1.99 ± 0.11%). Besides, mobile ARGs such as vanA, tet(48), mcr, and tetX were also detected in the mangrove sediments. Comparative analysis against terrestrial and ocean resistomes showed that the ocean ecosystem harbored the lowest ARG diversity (Chao1 = 71.12) followed by mangroves (Chao1 = 258.07) and terrestrial ecosystem (Chao1 = 294.07). ARG subtypes such as abeS and qacG were detected exclusively in ocean datasets. Likewise, rpoB2, multidrug ABC transporter, and macB, detected in mangrove and terrestrial datasets, were not detected in the ocean datasets. This study shows that the socioeconomic factors strongly determine the antibiotic resistome in the mangrove. Direct anthropogenic intervention in the mangrove environment also enriches antibiotic resistome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115795DOI Listing

Publication Analysis

Top Keywords

mangrove sediments
12
resistome mangrove
8
metagenomic insights
4
insights antibiotic
4
antibiotic resistome
4
mangrove
4
sediments association
4
association socioeconomic
4
socioeconomic status
4
status mangrove
4

Similar Publications

Complete genome sequence of the marine mangrove fungus Sarcopodium sp.QM3-1 confirmed its high potential for antimicrobial activity.

Mar Genomics

March 2025

Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:

Mangroves, owing to their unique living environment, serve as an important source of natural bioactive compounds. Sarcopodium sp. QM3-1, a marine fungus isolated from mangrove sediments of Quanzhou Bay, exhibited antifungal activity against the plant pathogen Agrobacterium tumefaciens and Magnaporthe oryzae.

View Article and Find Full Text PDF

Effectiveness of artificially planted mangroves on remediation of metals released from ship-breaking activities.

Mar Pollut Bull

January 2025

Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia. Electronic address:

The pervasive and escalating issue of toxic metal pollution has gathered global attention, necessitating the exploration of innovative ecological strategies like phytoremediation. This study explored the extent of potentially toxic metal contamination status and the effectiveness of three planted mangrove species (Avicennia marina, Bruguiera gymnorhiza,and Excoecaria agallocha) in phytoremediation efforts to reduce pollution level. The results indicated that the mean concentrations of elements in the sediment of the area followed a descending sequence: Fe (27,136.

View Article and Find Full Text PDF

Secondary Metabolites from the Mangrove Ecosystem-Derived Fungi spp.: Chemical Diversity and Biological Activity.

Mar Drugs

December 2024

Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

Mangrove ecosystems have attracted widespread attention because of their high salinity, muddy or sandy soil, and low pH, as well as being partly anoxic and periodically soaked by tides. Mangrove plants, soil, or sediment-derived fungi, especially the species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This paper reviews the structural diversity and biological activity of secondary metabolites isolated from mangrove ecosystem-derived species over the past 5 years (January 2020-October 2024), and 417 natural products (including 170 new compounds, among which 32 new compounds were separated under the guidance of molecular networking and the OSMAC approach) are described.

View Article and Find Full Text PDF

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

Unlabelled: Blue carbon represents the organic carbon retained in marine coastal ecosystems. (an Arabic for "mudflats"), formed in tidal environments under arid conditions, have been proposed to be capable of carbon sequestrating. Despite the growing understanding of the critical role of blue carbon ecosystems, there is a current dispute about whether sabkhas around the Persian Gulf can contribute to carbon retention as a blue carbon ecosystem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!