Food additives such as titanium dioxide (E171), iron oxides and hydroxides (E172), silver (E174), and gold (E175) are highly used as colorants while silicon dioxide (E551) is generally used as anticaking in ultra-processed foodstuff highly used in the Western diets. These additives contain nanosized particles (1-100 nm) and there is a rising concern since these nanoparticles could exert major adverse effects due to they are not metabolized but are accumulated in several organs. Here, we analyze the evidence of gastrotoxicity, hepatotoxicity and the impact of microbiota on gut-brain and gut-liver axis induced by E171, E172, E174, E175 and E551 and their non-food grade nanosized counterparts after oral consumption. Although, no studies using these food additives have been performed to evaluate neurotoxicity or alterations in animal behavior, their non-food grade nanosized counterparts have been associated with stress, depression, cognitive and eating disorders as signs of animal behavior alterations. We identified that these food additives induce gastrotoxicity, hepatotoxicity and alterations in gut microbiota and most evidence points out oxidative stress as the main mechanism of toxicity, however, the role of oxidative stress as the main mechanism needs to be explored further.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2020.111814DOI Listing

Publication Analysis

Top Keywords

food additives
16
gastrotoxicity hepatotoxicity
12
animal behavior
12
oxidative stress
12
induce gastrotoxicity
8
hepatotoxicity alterations
8
alterations animal
8
role oxidative
8
non-food grade
8
grade nanosized
8

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications.

Sensors (Basel)

January 2025

Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.

We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.

View Article and Find Full Text PDF

Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.

View Article and Find Full Text PDF

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!