The PP2A subunit PR130 is a key regulator of cell development and oncogenic transformation.

Biochim Biophys Acta Rev Cancer

Department of Toxicology, University Medical Center, 55131 Mainz, Germany. Electronic address:

Published: December 2020

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase. This enzyme is involved in a plethora of cellular processes, including apoptosis, autophagy, cell proliferation, and DNA repair. Remarkably, PP2A can act as a context-dependent tumor suppressor or promoter. Active PP2A complexes consist of structural (PP2A-A), regulatory (PP2A-B), and catalytic (PP2A-C) subunits. The regulatory subunits define the substrate specificity and the subcellular localization of the holoenzyme. Here we condense the increasing evidence that the PP2A B-type subunit PR130 is a critical regulator of cell identity and oncogenic transformation. We summarize knowledge on the biological functions of PR130 in normal and transformed cells, targets of the PP2A-PR130 complex, and how diverse extra- and intracellular stimuli control the expression and activity of PR130. We additionally review the impact of PP2A-PR130 on cardiac functions, neuronal processes, and anti-viral defense and how this might affect cancer development and therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbcan.2020.188453DOI Listing

Publication Analysis

Top Keywords

subunit pr130
8
regulator cell
8
oncogenic transformation
8
pp2a
5
pp2a subunit
4
pr130
4
pr130 key
4
key regulator
4
cell development
4
development oncogenic
4

Similar Publications

As a major source of cellular serine and threonine phosphatase activity, protein phosphatase-2A (PP2A) modulates signaling pathways in health and disease. PP2A complexes consist of catalytic, scaffolding, and B-type subunits. Seventeen PP2A B-type subunits direct PP2A complexes to selected substrates.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with a dismal prognosis. Here, we show how an inhibition of de novo dNTP synthesis by the ribonucleotide reductase (RNR) inhibitor hydroxyurea and an inhibition of epigenetic modifiers of the histone deacetylase (HDAC) family affect short-term cultured primary murine PDAC cells. We used clinically relevant doses of hydroxyurea and the class 1 HDAC inhibitor entinostat.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase. This enzyme is involved in a plethora of cellular processes, including apoptosis, autophagy, cell proliferation, and DNA repair. Remarkably, PP2A can act as a context-dependent tumor suppressor or promoter.

View Article and Find Full Text PDF

The alpha regulator subunit B'' of protein phosphatase 2 (PPP2R3A), a regulatory subunit of protein phosphatase 2A (PP2A), was reported to present a special subcellular localization in cardiomyocytes and elevate in non-ischemia failing hearts. PPP2R3A has two transcriptions PR72 and PR130. PR72 acts as a negative regulator of the Wnt signaling cascade, while the Wnt signaling cascade plays a pivotal role in cardiac development.

View Article and Find Full Text PDF

Checkpoint kinases sense replicative stress to prevent DNA damage. Here we show that the histone deacetylases HDAC1/HDAC2 sustain the phosphorylation of the checkpoint kinases ATM, CHK1 and CHK2, activity of the cell cycle gatekeeper kinases WEE1 and CDK1, and induction of the tumour suppressor p53 in response to stalled DNA replication. Consequently, HDAC inhibition upon replicative stress promotes mitotic catastrophe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!