Diatraea saccharalis constitutes a threat to the sugarcane productivity, and obtaining borer tolerant cultivars is an alternative method of control. Although there are studies about the relationship between the interaction of D. saccharalis with sugarcane, little is known about the molecular and genomic basis of defense mechanisms that confer tolerance to sugarcane cultivars. Here, we analyzed the transcriptional profile of two sugarcane cultivars in response to borer attack, RB867515 and SP80-3280, which are considered tolerant and sensitive to the borer attack, respectively. A sugarcane genome and transcriptome were used for read mapping. Differentially expressed transcripts and genes were identified and termed to as DETs and DEGs, according to the sugarcane database adopted. A total of 745 DETs and 416 DEGs were identified (log|ratio| > 0.81; FDR corrected P value ≤ 0.01) after borer infestation. Following annotation of up- and down-regulated DETs and DEGs by similarity searches, the sugarcane cultivars demonstrated an up-regulation of jasmonic acid (JA), ethylene (ET), and defense protein genes, as well as a down-regulation of pathways involved in photosynthesis and energy metabolism. The expression analysis also highlighted that RB867515 cultivar is possibly more transcriptionally activated after 12 h from infestation than SP80-3280, which could imply in quicker responses by probably triggering more defense-related genes and mediating metabolic pathways to cope with borer attack.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-020-00755-8 | DOI Listing |
Front Genome Ed
December 2024
Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States.
Sugarcane ( spp.) is an important biofuel feedstock and a leading source of global table sugar. hybrid cultivars are highly polyploid (2n = 100-130), containing large numbers of functionally redundant hom(e)ologs in their genomes.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
Background: Drought is one of main critical factors that limits sugarcane productivity and juice quality in tropical regions. The unprecedented changes in climate such as monsoon failure, increase in temperature and other factors warrant the need for development of stress tolerant cultivars to sustain sugar production. Plant Nuclear factor (NF-Y) is one of the major classes of transcription factors that have a major role in plant development and abiotic stress response.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510000, Guangdong, China.
A total of 24 genes of vacuolar H-translocating pyrophosphatases H-PPases (VPP) genes were identified in Saccharum spontaneum AP85-441 and the ScVPP1-overexpressed Arabidopsis plants conferred salt tolerance. The vital role of vacuolar H-translocating pyrophosphatases H-PPases (VPP) genes involved in plants in response to abiotic stresses. However, the understanding of VPP functions in sugarcane remained unclear.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources & Guangxi Key Lab for Saccharum Biology, Guangxi University, Nanning 530005, China.
Saccharum officinarum (S. officinarum) and Saccharum spontaneum (S. spontaneum) are two fundamental species of modern sugarcane cultivars, exhibiting divergent tillering patterns crucial for sugarcane architecture and yield.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
Background: Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!