A novel electrochemical carbon cloth (CC) analysis device (eCAD) is proposed for the determination of Pb in environmental water samples, which was assembled using a single-step functional CC as both the sensing and the substrate material. The modified CC was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectra, and electrochemical impedance spectroscopy. The increase in electrochemical activity is due to the increased defective extent and excellent electrochemical activity of CC. Under optimum conditions (viz. a pH value of 4.5, deposition time of 160 s), the sensor is capable of determining Pb by differential pulse anodic stripping voltammetry (DPASV) at a typical working potential of - 1.0 V (vs. Ag/AgCl). Response is linear from 5.0 × 10 to 3.0 × 10 M Pb, and the detection limit is 4.8 nM (at S/N = 3). The sensor was successfully applied to the determination of Pb in real samples, with apparent recoveries from 96.0 to 102.0% and a relative standard deviation of less than 3.4%. In addition, the integration of the sensor with signal collection components has enabled us to realize on-site analysis of Pb, which is highlighted as a new generation of electrode platform for the development of a portable analysis device.Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-020-04549-4 | DOI Listing |
Nanomicro Lett
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, India.
In this study, we demonstrate MXene (TiCT)-based coin-cell asymmetric supercapacitor (coin-cell ASC) exhibiting high energy density and high power density along with good capacitance. We synthesized mesoporous carbon (MC) by annealing alginic acid at varying temperatures (900 °C, 1000 °C and 1100 °C). Among the prepared samples, MC-1000 exhibited a highly porous structure and a higher surface area.
View Article and Find Full Text PDFChem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFRSC Adv
January 2025
Plasmonic Nanomaterials Laboratory, Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore-641 004 Tamilnadu India
Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!