Objective: Epileptic spasms are a hallmark of severe seizure disorders. The neurophysiological mechanisms and the neuronal circuit(s) that generate these seizures are unresolved and are the focus of studies reported here.

Methods: In the tetrodotoxin model, we used 16-channel microarrays and microwires to record electrophysiological activity in neocortex and thalamus during spasms. Chemogenetic activation was used to examine the role of neocortical pyramidal cells in generating spasms. Comparisons were made to recordings from infantile spasm patients.

Results: Current source density and simultaneous multiunit activity analyses indicate that the ictal events of spasms are initiated in infragranular cortical layers. A dramatic pause of neuronal activity was recorded immediately prior to the onset of spasms. This preictal pause is shown to share many features with the down states of slow wave sleep. In addition, the ensuing interictal up states of slow wave rhythms are more intense in epileptic than control animals and occasionally appear sufficient to initiate spasms. Chemogenetic activation of neocortical pyramidal cells supported these observations, as it increased slow oscillations and spasm numbers and clustering. Recordings also revealed a ramp-up in the number of neocortical slow oscillations preceding spasms, which was also observed in infantile spasm patients.

Interpretation: Our findings provide evidence that epileptic spasms can arise from the neocortex and reveal a previously unappreciated interplay between brain state physiology and spasm generation. The identification of neocortical up states as a mechanism capable of initiating epileptic spasms will likely provide new targets for interventional therapies. ANN NEUROL 2021;89:226-241.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855630PMC
http://dx.doi.org/10.1002/ana.25935DOI Listing

Publication Analysis

Top Keywords

epileptic spasms
16
slow oscillations
12
spasms
10
neocortical slow
8
spasms chemogenetic
8
chemogenetic activation
8
neocortical pyramidal
8
pyramidal cells
8
infantile spasm
8
states slow
8

Similar Publications

The study evaluated the short-term effectiveness and tolerability of vigabatrin therapy in children with infantile epileptic spasms syndrome (IESS). Children with IESS were enrolled within two weeks of initiation of vigabatrin and prospectively followed up to 12 wk for complete cessation of epileptic spasms (ES) and occurrence of adverse events. Of 107 children studied, there was a preponderance of structural etiology (82.

View Article and Find Full Text PDF

Infantile Spasms in Pediatric Down Syndrome: Potential Mechanisms Driving Therapeutic Considerations.

Children (Basel)

December 2024

Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches.

View Article and Find Full Text PDF

Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder affecting multiple organ systems, with a prevalence of 1:6,760-1:13,520 live births in Germany. On the molecular level, TSC is caused by heterozygous loss-of-function variants in either of the genes TSC1 or TSC2, encoding the Tuberin-Hamartin complex, which acts as a critical upstream suppressor of the mammalian target of rapamycin (mTOR), a key signaling pathway controlling cellular growth and metabolism. Despite the therapeutic success of mTOR inhibition in treating TSC-associated manifestations, studies with mTOR inhibitors in children with TSC above two years of age have failed to demonstrate beneficial effects on disease-related neuropsychological deficits.

View Article and Find Full Text PDF

Background: Infantile spasms syndrome is a severe form of infantile epilepsy. It is commonly treated with hormonal therapies or vigabatrin, either alone or in combination. This study aimed to assess the efficacy of these treatment modalities and explore associations with aetiology, and pre-existing developmental delay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!