Substrate-dependent fish have shifted less in distribution under climate change.

Commun Biol

Marine Geospatial Ecology Lab, Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, 27708, USA.

Published: October 2020

Analyses of the impacts of climate change on fish species have primarily considered dynamic oceanographic variables that are the output of predictive models, yet fish species distributions are determined by much more than just variables such as ocean temperature. Functionally diverse species are differentially influenced by oceanographic as well as physiographic variables such as bottom substrate, thereby influencing their ability to shift distributions. Here, we show that fish species distributions that are more associated with bottom substrate than other dynamic environmental variables have shifted significantly less over the last 30 years than species whose distributions are associated with bottom salinity. Correspondingly, species whose distributions are primarily determined by bottom temperature or ocean salinity have shifted their mean centroid and southern and northern range boundaries significantly more than species whose distributions are determined by substrate or depth. The influence of oceanographic versus static variables differs by species functional group, as benthic species distributions are more associated with substrate and they have shifted significantly less than pelagic species whose distributions are primarily associated with ocean temperatures. In conclusion, benthic fish, that are more influenced by substrate, may prove much less likely to shift distributions under future climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567839PMC
http://dx.doi.org/10.1038/s42003-020-01325-1DOI Listing

Publication Analysis

Top Keywords

species distributions
28
distributions associated
16
climate change
12
fish species
12
distributions determined
12
species
10
distributions
9
bottom substrate
8
shift distributions
8
associated bottom
8

Similar Publications

Background: The Lihir Islands of Papua New Guinea, located in an area with high burden of malaria and hosting a large mining operation, offer a unique opportunity to study transmission. There, we investigated human and vector factors influencing malaria transmission.

Methods: In 2019, a cross-sectional study was conducted on 2,914 individuals assessing malaria prevalence through rapid diagnostic tests (RDT), microscopy, and quantitative PCR (qPCR).

View Article and Find Full Text PDF

Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.

View Article and Find Full Text PDF

Trophic ecology in an anchialine cave: A stable isotope study.

PLoS One

January 2025

Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Ciudad de México, Mexico.

The analysis of carbon and nitrogen stable isotopes (δ13C and δ15N) has been widely used in ecology since it allows to identify the circulation of energy in a trophic network. The anchialine ecosystem is one of the less explored aquatic ecosystems in the world and stable isotope analysis represents a useful tool to identify the routes through which energy flows and to define the trophic niches of species. Sampling and data recording was conducted in one anchialine cave, Cenote Vaca Ha, near the town of Tulum, Quintana Roo, Mexico, where seven stygobitic species endemic to the anchialine caves of the Yucatan Peninsula, plus sediment, water and vegetation samples were analyzed to determine what the main nutrient sources are.

View Article and Find Full Text PDF

Spatially dependent tissue distribution of thyroid hormones by plasma thyroid hormone binding proteins.

Pflugers Arch

January 2025

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.

Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings.

View Article and Find Full Text PDF

This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!