The influence of climate variability on demographic rates of avian Afro-palearctic migrants.

Sci Rep

Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Benátská 2, 128 01, Praha 2, Czech Republic.

Published: October 2020

Climate is an important driver of changes in animal population size, but its effect on the underlying demographic rates remains insufficiently understood. This is particularly true for avian long-distance migrants which are exposed to different climatic factors at different phases of their annual cycle. To fill this knowledge gap, we used data collected by a national-wide bird ringing scheme for eight migratory species wintering in sub-Saharan Africa and investigated the impact of climate variability on their breeding productivity and adult survival. While temperature at the breeding grounds could relate to the breeding productivity either positively (higher food availability in warmer springs) or negatively (food scarcity in warmer springs due to trophic mismatch), water availability at the non-breeding should limit the adult survival and the breeding productivity. Consistent with the prediction of the trophic mismatch hypothesis, we found that warmer springs at the breeding grounds were linked with lower breeding productivity, explaining 29% of temporal variance across all species. Higher water availability at the sub-Saharan non-breeding grounds was related to higher adult survival (18% temporal variance explained) but did not carry-over to breeding productivity. Our results show that climate variability at both breeding and non-breeding grounds shapes different demographic rates of long-distance migrants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567877PMC
http://dx.doi.org/10.1038/s41598-020-74658-wDOI Listing

Publication Analysis

Top Keywords

breeding productivity
20
climate variability
12
demographic rates
12
adult survival
12
warmer springs
12
long-distance migrants
8
breeding
8
variability breeding
8
breeding grounds
8
trophic mismatch
8

Similar Publications

Avian haemosporidian parasites affecting non-descript village chickens in Africa.

Trop Anim Health Prod

January 2025

Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida, South Africa.

Smallholder farmers in most of the rural areas in African countries rear non-descript village chickens for petty cash, food provision and for performing rituals. Village chicken production systems are regarded as low input- low output because the chickens receive minimum care and produce average to less eggs and meat. The chickens receive minimal biosecurity and are often left to scavenge for feed and thus exposes them to potential vector parasites that can transmit parasites such as haemoparasites.

View Article and Find Full Text PDF

Multi-omics analysis identified the GmUGT88A1 gene, which coordinately regulates soybean resistance to cyst nematode and isoflavone content.

Plant Biotechnol J

January 2025

Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.

Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.

View Article and Find Full Text PDF

The conventional approaches to crop breeding, which rely predominantly on time-consuming and labor-intensive methods such as traditional hybridization and mutation breeding, face challenges in efficiently introducing targeted traits and generating diverse plant populations. Conversely, the emergence of genome editing technologies has ushered in a paradigm shift, enabling the precise and expedited manipulation of plant genomes to intentionally introduce desired characteristics. One of the most widespread editing tools is the CRISPR/Cas system, which has been used by researchers to study important biology-related problems.

View Article and Find Full Text PDF

Social behaviour traits and their impact on feed efficiency are of particular interest in pig farming. The integration of automatic feeders enables the collection of multiple phenotypes for breeding purposes. The additive genetic and social genetic effect can be estimated considering all the visits to the feeder by modelling each visit independently in a 'visit-based approach'.

View Article and Find Full Text PDF

Maize is a cornerstone of global agriculture, essential for food security, livestock feed, and industrial uses. With the increasing demand for maize due to population growth and changing dietary patterns, there is a pressing need to enhance maize production. Hybridization is a strategic approach for developing high-yielding and stress-tolerant maize varieties and evaluating these hybrids in specific environmental conditions is vital for optimizing yield and adaptability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!