Development of sensitive local probes of magnon dynamics is essential to further understand the physical processes that govern magnon generation, propagation, scattering, and relaxation. Quantum spin sensors like the NV center in diamond have long spin lifetimes and their relaxation can be used to sense magnetic field noise at gigahertz frequencies. Thus far, NV sensing of ferromagnetic dynamics has been constrained to the case where the NV spin is resonant with a magnon mode in the sample meaning that the NV frequency provides an upper bound to detection. In this work we demonstrate ensemble NV detection of spinwaves generated via a nonlinear instability process where spinwaves of nonzero wavevector are parametrically driven by a high amplitude microwave field. NV relaxation caused by these driven spinwaves can be divided into two regimes; one- and multi-magnon NV relaxometry. In the one-magnon NV relaxometry regime the driven spinwave frequency is below the NV frequencies. The driven spinwave undergoes four-magnon scattering resulting in an increase in the population of magnons which are frequency matched to the NVs. The dipole magnetic fields of the NV-resonant magnons couple to and relax nearby NV spins. The amplitude of the NV relaxation increases with the wavevector of the driven spinwave mode which we are able to vary up to 3 × 10 m, well into the part of the spinwave spectrum dominated by the exchange interaction. Increasing the strength of the applied magnetic field brings all spinwave modes to higher frequencies than the NV frequencies. We find that the NVs are relaxed by the driven spinwave instability despite the absence of any individual NV-resonant magnons, suggesting that multiple magnons participate in creating magnetic field noise below the ferromagnetic gap frequency which causes NV spin relaxation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568545 | PMC |
http://dx.doi.org/10.1038/s41467-020-19121-0 | DOI Listing |
Phys Rev Lett
December 2024
Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Quantum magnetic materials can provide explicit realizations of paradigm models in quantum many-body physics. In this context, SrCu_{2}(BO_{3})_{2} is a faithful realization of the Shastry-Sutherland model for ideally frustrated spin dimers, even displaying several of its quantum magnetic phases as a function of pressure. We perform inelastic neutron scattering measurements on SrCu_{2}(BO_{3})_{2} at 5.
View Article and Find Full Text PDFSci Adv
September 2024
Institut für Nanospektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany.
The efficient excitation of spin waves is a key challenge in the realization of magnonic devices. We demonstrate current-driven generation of spin waves in antiferromagnetically coupled magnetic vortices. We use time-resolved x-ray microscopy to directly image the emission of spin waves upon the application of alternating currents flowing directly through the magnetic stack.
View Article and Find Full Text PDFNat Commun
August 2024
Faculty of Physics, University of Vienna, Vienna, Austria.
Bistability, a universal phenomenon found in diverse fields such as biology, chemistry, and physics, describes a scenario in which a system has two stable equilibrium states and resets to one of the two states. The ability to switch between these two states is the basis for a wide range of applications, particularly in memory and logic operations. Here, we present a universal approach to achieve bistable switching in magnonics, the field processing data using spin waves.
View Article and Find Full Text PDFPhys Rev Lett
November 2023
Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198, Japan.
Harnessing the causal relationships between mechanical and magnetic properties of Van der Waals materials presents a wealth of untapped opportunity for scientific and technological advancement, from precision sensing to novel memories. This can, however, only be exploited if the means exist to efficiently interface with the magnetoelastic interaction. Here, we demonstrate acoustically driven spin-wave resonance in a crystalline antiferromagnet, chromium trichloride, via surface acoustic wave irradiation.
View Article and Find Full Text PDFPhys Rev Lett
October 2023
Fachbereich Physik and Landesforschungszentrum OPTIMAS, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663 Kaiserslautern, Germany.
Nonlinear interactions are crucial in science and engineering. Here, we investigate wave interactions in a highly nonlinear magnetic system driven by parametric pumping leading to Bose-Einstein condensation of spin-wave quanta-magnons. Using Brillouin light scattering spectroscopy in yttrium-iron garnet films, we found and identified a set of nonlinear processes resulting in off-resonant spin-wave excitations-virtual magnons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!