Intrahepatic cholangiocarcinoma (ICC) is frequently driven by aberrant activation and develops in the liver with chronic inflammation. Although the Notch signaling pathway is critically involved in ICC development, detailed mechanisms of Notch-driven ICC development are still unknown. Here, we use mice whose Notch signaling is genetically engineered to show that the Notch signaling pathway, specifically the Notch/Hes1 axis, plays an essential role in expanding ductular cells in the liver with chronic inflammation or oncogenic activation. Activation of Notch1 enhanced the development of proliferating ductal cells (PDC) in injured livers, while depletion of led to suppression. In correlation with PDC expansion, ICC development was also regulated by the Notch/Hes1 axis and suppressed by depletion. Lineage-tracing experiments using mice further confirmed that Hes1 plays a critical role in the induction of PDC and that ICC could originate from PDC. Analysis of human ICC specimens showed PDC in nonneoplastic background tissues, confirming HES1 expression in both PDC and ICC tumor cells. Our findings provide novel direct experimental evidence that Hes1 plays an essential role in the development of ICC via PDC. SIGNIFICANCE: This study contributes to the identification of the cells of origin that initiate ICC and suggests that HES1 may represent a therapeutic target in ICC.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-20-1161DOI Listing

Publication Analysis

Top Keywords

notch signaling
12
icc development
12
icc
10
proliferating ductal
8
intrahepatic cholangiocarcinoma
8
liver chronic
8
chronic inflammation
8
signaling pathway
8
notch/hes1 axis
8
plays essential
8

Similar Publications

Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.

View Article and Find Full Text PDF

Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control.

Front Med

January 2025

Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.

Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.

View Article and Find Full Text PDF

An overview of recent progress in the molecular mechanisms and key biological macromolecules involved in limb regeneration of decapods.

Int J Biol Macromol

December 2024

College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China. Electronic address:

Understanding the molecular mechanisms of limb regeneration in decapods can significantly enhance aquaculture production by improving survival and growth, as well as facilitating the development of lab-grown crustacean meat as a sustainable protein source. This review explores the molecular mechanisms of decapod limb regeneration, focusing on the key signaling pathways, genes, and proteins involved in this process. The initial stages of regeneration involve immune response and hemolymph coagulation, which are regulated via signaling pathways such as Toll, MAPK, IMD, and JAK/STAT.

View Article and Find Full Text PDF

RAP-2 and CNH-MAP4 Kinase MIG-15 confer resistance in bystander epithelium to cell-fate transformation by excess Ras or Notch activity.

Proc Natl Acad Sci U S A

January 2025

Department of Translational Medical Sciences, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030.

Induction of cell fates by growth factors impacts many facets of developmental biology and disease. LIN-3/EGF induces the equipotent vulval precursor cells (VPCs) in to assume the 3˚-3˚-2˚-1˚-2˚-3˚ pattern of cell fates. 1˚ and 2˚ cells become specialized epithelia and undergo stereotyped series of cell divisions to form the vulva.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!