"Living" cell sheets or bioelectronic chips have great potentials to improve the quality of diagnostics and therapies. However, handling these thin and delicate materials remains a grand challenge because the external force applied for gripping and releasing can easily deform or damage the materials. This study presents a soft manipulator that can manipulate and transport cell/tissue sheets and ultrathin wearable biosensing devices seamlessly by recapitulating how a cephalopod's suction cup works. The soft manipulator consists of an ultrafast thermo-responsive, microchanneled hydrogel layer with tissue-like softness and an electric heater layer. The electric current to the manipulator drives microchannels of the gel to shrink/expand and results in a pressure change through the microchannels. The manipulator can lift/detach an object within 10 s and can be used repeatedly over 50 times. This soft manipulator would be highly useful for safe and reliable assembly and implantation of therapeutic cell/tissue sheets and biosensing devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567602PMC
http://dx.doi.org/10.1126/sciadv.abc5630DOI Listing

Publication Analysis

Top Keywords

soft manipulator
16
cell/tissue sheets
12
handling thin
8
sheets bioelectronic
8
biosensing devices
8
manipulator
6
electrothermal soft
4
manipulator enabling
4
enabling safe
4
safe transport
4

Similar Publications

Accurate DNA Sequence Prediction for Sorting Target-Chirality Carbon Nanotubes and Manipulating Their Functionalities.

ACS Nano

January 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.

View Article and Find Full Text PDF

Incorporating nanomaterials into hydrogels allows for the creation of versatile materials with properties that can be precisely tailored by manipulating their nanoscale structures, leading to a wide range of bulk properties. Investigating the structural and property characteristics of composite hydrogels is crucial in tailoring their performance for specific applications. This study focuses on investigating the correlation between the structural arrangement and properties of a composite hydrogel of thermoresponsive polymer, gelatin, and light-responsive antimicrobial porous gold nanorods (PAuNRs).

View Article and Find Full Text PDF

Stress-induced self-assembly of hierarchically twisted stripe arrays.

Sci Bull (Beijing)

December 2024

Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:

Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.

View Article and Find Full Text PDF

Amphibious Soft Robots Based on Programmable Actuators Fabricated by Brushing Chinese Ink on Paper.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.

Soft robots based on actuators that can work in both on-ground and on-water situations are environmentally adaptable and can accomplish tasks in complex environments. However, most current amphibious actuators need external stimuli to move on water and require complex preparation processes. Herein, amphibious Ink-paper/polyethylene programmable actuators and robots are proposed, which are fabricated by rapidly brushing Chinese ink on paper.

View Article and Find Full Text PDF

Research on the operational properties of the soft gripper pads.

Sci Rep

December 2024

Division of Mechatronic Devices, Institute of Mechanical Technology, Poznan University of Technology, 60-965, Poznan, Poland.

Grippers are commonly used as a technological tooling for manipulators. They enable robots to interact with objects in their work area. Grippers have a wide range of differentiation focused on the operation performed and the properties (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!