Neonatal calvarial bone has been widely used for investigating the biological behaviour of intramembranous bones. This work evaluated the bone formation of neonatal calvarial bone by microcomputed tomography (micro-CT) and histomorphometry. Moreover, the viability of neonatal calvarial bone and the effect of micro-CT radiation exposure on neonatal calvarial bone viability were investigated. The calvarial bones of 4-day-old CD-1 mice were cultured in Dulbecco's modified Eagle's medium (DMEM) or osteogenic medium (OM) for 23 days. Micro-CT scanning and histological analysis were performed on days 2, 9, 16 and 23. An "OM-control" group was scanned only on days 2 and 23 to evaluate the effect of a single micro-CT radiation dose on calvarial bones. Histomorphometric measurements revealed that the number of osteoblasts per unit bone surface area (N. Ob/BS, /mm) (days 9, 16 and 23) and the number of osteoclasts per unit bone surface area (N. Oc/BS, /mm) (days 9 and 16) were higher and lower, respectively, in the OM group than in the DMEM group. Moreover, the calvarial bone survived for at least 16 days in vitro, as indicated by tartrate-resistant acid phosphatase (TRAP)-positive staining. Micro-CT assessment revealed that the bone surface (BS), bone volume (BV), bone surface density (BS/TV(Tissue volume)) and percent bone volume (BV/TV) were greater in the OM group than in the DMEM group except at baseline on day 2. All bone parameters of calvariae cultured in OM and OM-control conditions were not significantly different on days 2 and 23. Thus, the radiation dose from micro-CT in our study design had no perceptible effect on the formation of mouse calvarial bone in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acthis.2020.151614 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China. Electronic address:
In clinical scenarios, bone defects stemming from trauma, infections, degenerative diseases, or hereditary conditions necessitate considerable bone grafts. Researchers ardently focus on creating diverse biomaterials to expedite and enhance these intricate restorative processes. These biomaterials play a pivotal role in aiding osteogenesis and angiogenesis factors for reconstructing stable, fully developed bone tissue.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran.
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Marquette University School of Dentistry, Milwaukee, Wisconsin, USA.
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFBone Res
January 2025
Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Division of Plastic and Reconstructive Surgery, The Warren Alpert Medical School of Brown University.
Background: Cranial defects from trauma, surgery, or congenital conditions require precise reconstruction to restore cranial vault integrity. Autogenous calvarial grafts are preferred for their histocompatibility and biomechanical properties, but their success depends on a well-developed diploic space. Although prior studies have described overall skull thickness development, less is known about how diploic thickness changes through adulthood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!