Fatigue-Induced Evolution of AISI 310S Steel Microstructure after Electron Beam Treatment.

Materials (Basel)

Department of Natural Sciences Named after Professor V.M. Finkel, Siberian State Industrial University, Novokuznetsk 654007, Russia.

Published: October 2020

Research was carried out to explore the effect of pulsed electron beam irradiation on the behavior of structure and phase state in AISI 310S steel exposed to high-cycle fatigue. A 2.2 times increase in the fatigue life of samples irradiated by electron beams was revealed. The outcomes of scanning and transmission electron microscopic studies suggest the most probable reason for the fracture of steel samples irradiated by a high-intensity electron beam to be microcraters originating on a treated surface and acting as stress risers initiating the propagation of microcracks. The irradiation with a pulsed electron beam causes extremely fast melting of the surface. As a result of the subsequent rapid crystallization, a polycrystalline structure nearly twice as small as an average grain in the untreated steel is formed. Since a surface layer crystallizes rapidly, crystallization cells ranging from 120 to 170 nm develop in the volume of grains. The fatigue testing is shown to be associated with a martensite transformation γ ⇒ ε in the surface layer. One option to intensify a fatigue life increase of the steel in focus is supposed to be the neutralization of crater-forming on a surface treated by electron beams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602441PMC
http://dx.doi.org/10.3390/ma13204567DOI Listing

Publication Analysis

Top Keywords

electron beam
16
aisi 310s
8
310s steel
8
pulsed electron
8
fatigue life
8
samples irradiated
8
electron beams
8
surface layer
8
electron
7
steel
5

Similar Publications

Article Synopsis
  • Researchers investigated how high-intensity laser pulses propagate through a plasma channel by adjusting its length, successfully guiding 500 terawatt pulses over distances of 30 cm in hydrogen plasma.
  • They observed the initial energy transfer involving higher-order modes and a transition to more efficient propagation, noting a depletion of laser energy that generates wakefields.
  • Utilizing 21.3 joules of laser energy for localized electron injection, they achieved electron bunches with nearly monenergetic peaks reaching 9.2 GeV and total charge exceeding 10 GeV.
View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.

View Article and Find Full Text PDF

Designing Hybrid Plasmonic Superlattices with Spatially Confined Responsive Heterostructural Units.

Nano Lett

January 2025

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.

Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.

View Article and Find Full Text PDF

Unravelling nonclassical beam damage mechanisms in metal-organic frameworks by low-dose electron microscopy.

Nat Commun

January 2025

State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.

Recent advances in direct electron detectors and low-dose imaging techniques have opened up captivating possibilities for real-space visualization of radiation-induced structural dynamics. This has significantly contributed to our understanding of electron-beam radiation damage in materials, serving as the foundation for modern electron microscopy. In light of these developments, the exploration of more precise and specific beam damage mechanisms, along with the development of associated descriptive models, has expanded the theoretical framework of radiation damage beyond classical mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!