In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602145PMC
http://dx.doi.org/10.3390/membranes10100284DOI Listing

Publication Analysis

Top Keywords

concentration process
12
concentration
9
forward osmosis
8
high rejection
8
rejection rate
8
brine management
8
concentration factor
8
process
5
osmosis concentration
4
process review
4

Similar Publications

Bio-Conjugated Carbon Quantum Dots for Intracellular Uptake and Bioimaging Applications.

J Fluoresc

January 2025

Department of Medical Biotechnology and Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416 006, India.

Carbon quantum dots (CQDs) demonstrate outstanding biocompatibility and optical properties, making them ideal for monitoring cellular uptake. Due to their ultra-small size (typically < 10 nm) and fluorescent nature, CQDs hold significant potential as nanoparticles for bioimaging and tracking intracellular processes. The study examined the optimization parameters for conjugating calf thymus DNA (Ct-DNA) to CQDs to facilitate Ct-DNA internalization in mouse fibroblast cells (L929) and human breast cancer cells (MCF-7).

View Article and Find Full Text PDF

Biocides, applied in building materials as antimicrobial protectants, can be leached out by rain, presenting substantial environmental risks as confirmed by studies on aquatic environments. However, these biocides are consistently released throughout the year in a diluted form, posing unique challenges for the prediction of transport, transformation, and ecotoxicity assessment in soil. To address this challenge, we combined COMLEAM, which predicts leaching from facades into the soil, with the FOCUS PELMO pesticide model to predict biocide distribution in soil.

View Article and Find Full Text PDF

Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.

View Article and Find Full Text PDF

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Background: Neuropeptides are crucial proteins in the central nervous system, which significantly influence neurophysiological processes. This analysis explores cerebrospinal fluid alterations in Alzheimer's disease, offering insights to better understand the condition and explore novel diagnostic and therapeutic avenues.

Method: We systematically searched MEDLINE (PubMed), EMBASE, Cochrane, and Scopus using specific search strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!