We investigate the plasmonic behavior of a fractal photonic crystal fiber, with Sierpinski-like circular cross-section, and its potential applications for refractive index sensing and multiband polarization filters. Numerical results were obtained using the finite element method through the commercial software COMSOL Multiphysics. A set of 34 surface plasmon resonances was identified in the wavelength range from λ=630 nm to λ=1700 nm. Subsets of close resonances were noted as a consequence of similar symmetries of the surface plasmon resonance (SPR) modes. Polarization filtering capabilities are numerically shown in the telecommunication windows from the O-band to the L-band. In the case of refractive index sensing, we used the wavelength interrogation method in the wavelength range from λ=670 nm to λ=790 nm, where the system exhibited a sensitivity of S(λ)=1951.43 nm/RIU (refractive index unit). Due to the broadband capabilities of our concept, we expect that it will be useful to develop future ultra-wide band optical communication infrastructures, which are urgent to meet the ever-increasing demand for bandwidth-hungry devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587391PMC
http://dx.doi.org/10.3390/molecules25204654DOI Listing

Publication Analysis

Top Keywords

surface plasmon
12
plasmon resonances
8
photonic crystal
8
polarization filters
8
refractive sensing
8
wavelength range
8
resonances sierpinski-like
4
sierpinski-like photonic
4
crystal fibers
4
fibers polarization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!