The mechanisms underlying headaches attributed to hypoxia are poorly known. The activation of spinal trigeminal neurons with meningeal afferent input is believed to be responsible for the generation of headaches. In the caudal spinal trigeminal nucleus of anaesthetized and ventilated rats, the spontaneous firing of neurons with input from the exposed parietal dura mater and the activity evoked by mechanical stimuli to the dura and the adjacent periosteum were recorded, whereas the O2 fraction of the ventilation gas was stepwise reduced by omitting O2 and adding nitrogen. The expiratory CO2 level, the arterial pressure, the pulse rate, and the peripheral O2 saturation (SpO2) were registered. The meningeal blood flow was recorded using laser Doppler flowmetry; video imaging was used to measure the diameter of dural and medullary arteries. Lowering O2 in the ventilation gas from hyperoxic to normoxic and finally hypoxic conditions was followed by an increase in spontaneous activity up to 300% of the initial activity in most neurons, whereas the activity in a minor fraction of neurons ceased. The mechanical threshold was reduced under hypoxia. Arterial pressure, pulse rate, and SpO2 fell during stepwise lowering of the O2 concentration, whereas the arteries of the dura mater and the medulla dilated. Increased neuronal activity in the spinal trigeminal nucleus following lowering of the inhaled O2 goes along with variations in cardiovascular parameters. The experiments may partly model the conditions of high altitudes and other hypoxic states as risk factors for headache generation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/j.pain.0000000000002114DOI Listing

Publication Analysis

Top Keywords

spinal trigeminal
16
activation spinal
8
trigeminal neurons
8
trigeminal nucleus
8
dura mater
8
ventilation gas
8
arterial pressure
8
pressure pulse
8
pulse rate
8
neurons
5

Similar Publications

Purpose: An atypical presentation of cervical spondylopathy (CS), trigeminal neuralgia (TN) is attributable to the extension of trigeminal nuclei into the spinal cord and is frequently overlooked, leading to limited discussion with patients regarding potential anterior cervical surgery. Our systematic review assesses the effectiveness of cervical surgery for concurrent trigeminal neuralgia in cases of cervical spondylopathy.

Methods: A systematic review exploring cases of trigeminal neuralgia related to cervical spondylopathy was conducted searching on PubMed, Scopus and Embase databases for article in English.

View Article and Find Full Text PDF

Although spinal cord stimulator (SCS) therapy is generally used safely to treat chronic neuropathic pain conditions, this document highlights the less reported complication of unusual neurological problems including headaches. These developed temporally after the initiation of SCS therapy despite initial positive response to pain. The mechanisms might include activation of trigeminal receptors and neuroplasticity after SCS.

View Article and Find Full Text PDF

Emerging Psychotropic Drug for the Treatment of Trigeminal Pain: Salvinorin A.

Pharmaceuticals (Basel)

November 2024

Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de Mexico 04510, Mexico.

Trigeminal neuralgia (TN) is chronic pain caused by damage to the somatosensorial system on the trigeminal nerve or its branches, which involves peripheral and central dysfunction pain pathways. Trigeminal pain triggers disruptive pain in regions of the face, including within and around the mouth. Besides clinical experiences, translating the language of suffering into scientific terminology presents substantial challenges.

View Article and Find Full Text PDF

Chronic neuropathic pain is a debilitating condition that results from damage to the nervous system. Current treatments are largely ineffective, with limited understanding of the underlying mechanisms hindering development of effective treatments. Preclinical models of neuropathic pain have revealed that non-neural changes are important for the development of neuropathic pain, although these data are derived almost exclusively from post-mortem histological analyses.

View Article and Find Full Text PDF

Capsaicin-induced secondary hyperalgesia differences between the trigeminal and spinal innervation.

Sci Rep

January 2025

Department of Biosciences, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, Brazil.

This study compared the degree of secondary hyperalgesia and somatosensory threshold changes induced by topical capsaicin between spinal and trigeminal innervation. This crossover clinical trial included 40 healthy individuals in which 0.25 g of 1% capsaicin cream was randomly applied for 45 minutes to a circular area of 2 cm to the skin covering the masseter muscle and forearm in 2 different sessions, separated by at least 24 hours and no more than 72 hours (washout period).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!