There is recently growing interest towards synthesized human milk oligosaccharides (HMOs) as baby formula additives, and interestingly also as dietary supplements for adults. Currently quite a few manufacturers synthesize HMOs, however, their analysis is challenging, both in resolution and speed. In this paper an ultrafast high-resolution method is introduced for the separation of HMOs by multicapillary gel electrophoresis. Two gel compositions were evaluated with complementary resolving power. One was a conventionally used industrial standard carbohydrate separation matrix, resolving oligosaccharides according to their charge to hydrodynamic volume ratios. The other one was a borate-buffered dextran gel, which utilized the secondary equilibrium of the borate-vicinal diol complexation to enhance resolution. Considering the rapid analysis time and multiplexing (12-channel system), a 96 well sample plate can be analyzed in less than 80 min with the conventional type carbohydrate separation matrix and in less than one hour with the borate-buffered dextran gel. Exploiting the one fluorophore per molecule labeling stoichiometry, the limit of detection (S/N > 3) and limit of quantitation (S/N > 10) were determined as 0.025 and 0.100 mg/mL, respectively, with good linearity. Based on the calibration plot, the quantities of several low concentration HMOs were determined from a human milk sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.128200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!