A simulation model framework (SYMBIOSES) that includes a 3-dimensional ocean physics and biology model and a model for transport and fate of oil was used to investigate the potential for bioaccumulation and lethal/sublethal effects of oil components in the copepod Calanus finmarchicus in the Lofoten-Vesterålen archipelago of Norway. The oil model is coupled with the biology model by way of a bioaccumulation model, from which mortality and reduction in reproduction are calculated via a total body burden (TBB). The simulation results indicate that copepod body burden levels are affected by the spill type (surface spill, subsea blowout) and the spill timing (spring, autumn). The effects of oil component bioaccumulation on the copepod population for all scenarios are small, though greatest in the subsea blowout scenarios. We attribute this to the limited spatial and temporal overlap between copepods and oil in the environment simulated by the model. The coupling of the processes of oil transport, bioaccumulation/excretion and the associated effects are discussed in the context of the model framework and with a view towards applications for Ecological Risk Assessment (ERA).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2020.105184DOI Listing

Publication Analysis

Top Keywords

calanus finmarchicus
8
model
8
model framework
8
biology model
8
effects oil
8
body burden
8
subsea blowout
8
oil
7
simulating crude
4
crude oil
4

Similar Publications

Zooplankton such as copepods and krill are currently used to produce marine oil supplements, with the aim of helping consumers achieve the recommended intake of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs). Oils from lower trophic levels differ from fish oil in the distribution of lipids into different classes, and this can influence the bioaccessibility of fatty acids, i.e.

View Article and Find Full Text PDF

Marine microorganisms play a critical role in regulating atmospheric CO concentration via the biological carbon pump. Deposition of continental mineral dust on the sea surface increases carbon sequestration but the interaction between minerals and marine microorganisms is not well understood. We discovered that the interaction of clay minerals with dissolved organic matter and a γ-proteobacterium in seawater increases Transparent Exopolymer Particle (TEP) concentration, leading to organoclay floc formation.

View Article and Find Full Text PDF
Article Synopsis
  • Microplastics and oil are growing contaminants in the Arctic, yet their combined effects on marine life, specifically copepods, remain under-researched.
  • A study focused on three copepod species revealed that exposure to oil alone significantly reduced fecal pellet production by 34-58%, while microplastics and dispersant did not enhance this negative effect.
  • Additionally, oil exposure led to delayed hatching and lower success rates in copepod eggs, particularly with C. glacialis experiencing a 50% decrease in hatching success when exposed to both oil and microplastics.
View Article and Find Full Text PDF

The ongoing global climate crisis increases temperatures in polar regions faster and with greater magnitude than elsewhere. The decline of Arctic sea ice opens up new passages, eventually leading to higher anthropogenic activities such as shipping, fishing, and mining. Climate change and anthropogenic activities will increase contaminant transport from temperate to Arctic regions.

View Article and Find Full Text PDF

Respiration of lipids by copepods during diapause (overwintering dormancy) contributes to ocean carbon sequestration via the seasonal lipid pump (SLP). Parameterizing this flux in predictive models requires a mechanistic understanding of how life history adaptation in copepods shapes their timing of exit from diapause. We investigate the optimal phenology of in the Norwegian Sea using an individual-based model in which diapause exit is represented as a trait characterized by phenotypic mean and variance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!