A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endothelial epithelial sodium channel involves in high-fat diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. | LitMetric

Endothelial epithelial sodium channel involves in high-fat diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice.

Biochim Biophys Acta Mol Basis Dis

Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China. Electronic address:

Published: January 2021

We previously showed that increased epithelial sodium channel (ENaC) activity in endothelial cells induced by oxidized low-density lipoprotein (ox-LDL) contributes to vasculature dysfunction. Here, we investigated whether ENaC participates in the pathological process of atherosclerosis using LDL receptor-deficient (LDLr) mice. Male C57BL/6 and LDLr mice were fed a normal diet (ND) or high fat diet (HFD) for 10 weeks. Our data show that treatment of LDLr mice with a specific ENaC blocker, benzamil, significantly decreased atherosclerotic lesion formation and expression of matrix metalloproteinase 2 (MMP2) and metalloproteinase 9 (MMP9) in aortic arteries. Furthermore, benzamil ameliorated HFD-induced impairment of aortic endothelium-dependent dilation by reducing expression of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6 and production of adhesion molecules including VCAM-1 and ICAM-1 in both C57BL/6 and LDLr mice fed with HFD. In addition, HFD significantly increased ENaC activity and the levels of serum lipids, including ox-LDL. Our in vitro data further demonstrated that exogenous ox-LDL significantly increased the production of TNF-α, IL-1β, IL-6, VCAM-1 and ICAM-1. This ox-LDL-induced increase in inflammatory cytokines and adhesion molecules was reversed by γ-ENaC silencing or by treatment with the cyclooxygenase-2 (COX-2) antagonist celecoxib. Benzamil inhibited HFD-induced increase in COX-2 expression in aortic tissue in both C57BL/6 and LDLr mice, and γ-ENaC gene silencing attenuated ox-LDL-induced COX-2 expression in HUVECs. These data together suggest that HFD-induced activation of ENaC stimulates inflammatory signaling, thereby contributes to HFD-induced endothelial dysfunction and atherosclerotic lesion formation. Thus, targeting endothelial ENaC may be a promising strategy to halt atherogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2020.165989DOI Listing

Publication Analysis

Top Keywords

ldlr mice
20
c57bl/6 ldlr
12
epithelial sodium
8
sodium channel
8
low-density lipoprotein
8
enac activity
8
mice fed
8
atherosclerotic lesion
8
lesion formation
8
tnf-α il-1β
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!