3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels.

Int J Pharm

Food Science and Human Nutrition Department, Iowa State University, Ames, IA 50011, USA. Electronic address:

Published: December 2020

An extrusion based 3D printer was used to prepare the semi-solid tablets with different drug loading dosages (75, 100, 125 mg) under ambient temperature. The active pharmaceutical ingredient, theophylline, was uploaded within the hydrogels prepared of hydroxypropyl methylcellulose (HPMC) K4M or E4M. The HPMC concentrations were adjusted to different levels (10 and 12% w/w) to fulfill the requirements for 3D printing. Rheological and textural properties, as well as release profiles, were significantly affected by the type and concentration of excipient regardless of theophylline doses used. The printing material should exhibit shear-thinning behavior, keeping yield stress less than 4000 Pa and a loss factor (tanδ = G''/G') between 0.2 and 0.7, especially for 3D printing purposes using the current platform. The SEM images demonstrated that the hydrogel matrix exhibited a porous structure, which had the potential to encapsulate the theophylline clusters within its microstructure. The in vitro dissolution test showed that the release of all tablets was extended over 12 h, and the calculation of drug release kinetic models revealed that the 3D printed HPMC matrices release the theophylline by diffusion and erosion mechanisms. The excipient HPMC K4M 12% w/w hydrogel was optimal to load the theophylline with flexible dosage combinations due to the great extrudability and shape retention ability. The exploration of rheological properties was investigated in this study, and the results revealed that it is a feasible method to predict the SSE 3D printability and quality of hydrogel-API blend materials for the drug delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119983DOI Listing

Publication Analysis

Top Keywords

hydroxypropyl methylcellulose
8
methylcellulose hpmc
8
hpmc k4m
8
12% w/w
8
theophylline
6
hpmc
5
printing
4
printing extended-release
4
extended-release tablets
4
tablets theophylline
4

Similar Publications

Effects of xanthan gum and hydroxypropyl methylcellulose on the structure and physicochemical properties of triticale gluten during fermentation.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.

View Article and Find Full Text PDF

Drug-Silica-Cellulose Ternary Matrix for the Oral Delivery of Cyclosporine A: and evaluation.

Pharm Dev Technol

January 2025

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal - 576104, Karnataka, India.

Purpose: Supersaturated formulations have been widely explored for improving the oral bioavailability of drugs by using mesoporous silica (MS) to generate supersaturation via molecular adsorption; however, this is followed by precipitation. Several precipitation inhibitors (PI) have been explored to prevent precipitation and maintain the drug in solution for a longer period. However, the combined approach of MS and PIs, the impact of MS and Silica, and the loading of high-molecular-weight neutral molecules such as Cyclosporine A (CsA) have not yet been explored.

View Article and Find Full Text PDF

Stability enhancement of Amphotericin B using 3D printed biomimetic polymeric corneal patch to treat fungal infections.

Int J Pharm

December 2024

Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India. Electronic address:

Amphotericin B eye drops (reconstituted from lyophilized Amphotericin B formulation indicated for intravenous use) is used off-label for fungal keratitis. However, the reconstituted formulation is stable only for a week, even after refrigeration. Moreover, a high dosing frequency makes it an inconvenient treatment practice.

View Article and Find Full Text PDF

Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.

View Article and Find Full Text PDF

CY1-4, 9-nitropyridine [2',3':4,5] pyrimido [1,2-α] indole -5,11- dione, is an indoleamine 2,3-dioxygenase (IDO) inhibitor and a poorly water-soluble substance. It is very important to increase the solubility of CY1-4 to improve its bioavailability and therapeutic effect. In this study, the mesoporous silica nano-skeleton carrier material Sylysia was selected as the carrier to load CY1-4, and then the CY1-4 nano-skeleton drug delivery system (MSNM@CY1-4) was prepared by coating the hydrophilic polymer material Hydroxypropyl methylcellulose (HPMC) and the lipid material Distearoylphosphatidyl-ethanolamine-poly(ethylene glycol) (DSPE-PEG) to improve the anti-tumor effect of CY1-4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!