Cryopreservation, which refers to preservation of cells or tissues at subzero temperatures, inevitably involves the problem of cryoinjury caused by ice crystals. The application of an external electric field during the freezing process has been shown to be a promising approach to produce miniature ice grains and decrease the fraction of ice crystallization at a slow cooling rate. Thus, the dielectric and thermodynamic properties of NaCl-HO binary solutions at subzero temperatures were tremendously important for understanding the mechanism of ice formation under the manipulation of an AC electric field in biopreservation. However, there was still a lack of relevant information in the literature. The first objective of this study was to systematically measure the dielectric spectrum of 0.9% NaCl-HO binary solutions at temperatures ranging from -100°C to 0°C with a cooling/heating rate of 2°C/min. We further measured the thermodynamic properties of a 0.9% NaCl-HO binary solution while applying a series of electric fields near its dielectric relaxation frequency. The effect of the electric field on the crystal morphology was studied last. Pure water was selected as the control group. The results showed that an AC electric field can alter the thermodynamic process and thus the phase transition and ice crystal structure could be manipulated. It was concluded that the AC electric-assistant preservation method will be a promising technology in cryopreservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/bio.2020.0045 | DOI Listing |
Anal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFNano Lett
January 2025
Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
College of Electrical Engineering, Naval University of Engineering, Wuhan, P.R. China.
Laser-induced breakdown spectroscopy (LIBS) technology has been widely used in many fields including industrial production, space exploration, medical analysis, environmental pollution detection, etc. However, the stability problem of LIBS is one of the core problems for its further development. Solutions in the LIBS field in recent decades were summarized and classified from the physical mechanism and analysis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!