Multipartite entanglement (ME) is the fundamental ingredient for building quantum networks. The scale of ME determines its quantum information carrying and processing capability. Most of the current efforts for boosting the scale of ME focus on increasing the number of entangled nodes. However, the number of channels for broadcasting ME is also an important index for characterizing its scale. In this Letter, we experimentally exploit orbital angular momentum multiplexing and the spatial pump shaping technique to simultaneously and deterministically generate 11 channels of individually accessible and mutually orthogonal continuous variable (CV) spatially separated hexapartite entangled states over 66 optical modes in a single quantum system. These results suggest that our method can greatly expand the scale of ME and provide a new perspective and platform to construct a CV quantum network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.140501 | DOI Listing |
Plant Cell Environ
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, Ibaraki, Japan.
Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.
View Article and Find Full Text PDFAnal Chem
January 2025
The School of Information Sciences and Technology, Northwest University, Xi'an 710127, P.R.China.
Digital fluorescence immunoassay (DFI) based on random dispersion magnetic beads (MBs) is one of the powerful methods for ultrasensitive determination of protein biomarkers. However, in the DFI, improving the limit of detection (LOD) is challenging since the ratio of signal-to-background and the speed of manual counting beads are low. Herein, we developed a deep-learning network (ATTBeadNet) by utilizing a new hybrid attention mechanism within a UNet3+ framework for accurately and fast counting the MBs and proposed a DFI using CdS quantum dots (QDs) with narrow peak and optical stability as reported at first time.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada.
Monte Carlo (MC) simulations have become important in advancing nanoparticle (NP)-based applications for cancer imaging and therapy. This review explores the critical role of MC simulations in modeling complex biological interactions, optimizing NP designs, and enhancing the precision of therapeutic and diagnostic strategies. Key findings highlight the ability of MC simulations to predict NP bio-distribution, radiation dosimetry, and treatment efficacy, providing a robust framework for addressing the stochastic nature of biological systems.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Advanced Network Research Laboratories, NEC Corporation, Kawasaki 211-8666, Kanagawa, Japan.
We demonstrated the coexistence of an S-band CV-QKD signal with fully loaded C+L-band classical signals for the first time. The secret key rate of the S-band QKD system was 986 kbps with the C+L-band WDM signals transmitted through a 20 km G.654.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, Chile.
In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with possible orientations, known as the "-state clock model". When the -state clock model has Q≥5 possible configurations, it presents the famous Berezinskii-Kosterlitz-Thouless (BKT) phase associated with vortex states. We calculate the thermodynamic quantities using Monte Carlo simulations for even numbers, ranging from Q=2 to Q=8 spin orientations per site in a lattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!