Stimuli-responsive smart hydrogels have garnered considerable interest for their potential in biomedical applications. While widely utilized, little is known about the rheological and mechanical properties of the hydrogels with respect to the type of cross-linker in a systematic manner. In this study, we present a facile synthetic route toward ABA triblock copolymer hydrogels based on poly(ethylene oxide) (PEO). Two classes of hydrogels were prepared by employing the functional allyl glycidyl ether (AGE) monomer during the polymerization followed by the subsequent post-polymerization modification of prepared PAGE--PEO--PAGE via respective hydrogenation or thiol-ene reaction: (1) chemically cross-linked hydrogels responsive to redox stimuli and (2) physically cross-linked hydrogels responsive to temperature. A series of dynamic mechanical analyses revealed the relaxation dynamics of the associative A block. Most interestingly, the redox-responsive hydrogels demonstrated a highly tunable nature by introducing reducing and oxidizing agents, which provided the self-healing property and injectability. Together with superior biocompatibility, these smart hydrogels offer the prospect of advancing biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.0c01140DOI Listing

Publication Analysis

Top Keywords

hydrogels
9
triblock copolymer
8
copolymer hydrogels
8
smart hydrogels
8
biomedical applications
8
cross-linked hydrogels
8
hydrogels responsive
8
facile synthesis
4
synthesis polyethylene
4
polyethylene oxide-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!