Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global pandemic of coronavirus disease 2019 (COVID-19). The spike protein expressed on the surface of this virus is highly glycosylated and plays an essential role during the process of infection. We conducted a comprehensive mass spectrometric analysis of the N-glycosylation profiles of the SARS-CoV-2 spike proteins using signature ions-triggered electron-transfer/higher-energy collision dissociation (EThcD) mass spectrometry. The patterns of N-glycosylation within the recombinant ectodomain and S1 subunit of the SARS-CoV-2 spike protein were characterized using this approach. Significant variations were observed in the distribution of glycan types as well as the specific individual glycans on the modification sites of the ectodomain and subunit proteins. The relative abundance of sialylated glycans in the S1 subunit compared to the full-length protein could indicate differences in the global structure and function of these two species. In addition, we compared N-glycan profiles of the recombinant spike proteins produced from different expression systems, including human embryonic kidney (HEK 293) cells and (SF9) insect cells. These results provide useful information for the study of the interactions of SARS-CoV-2 viral proteins and for the development of effective vaccines and therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586457PMC
http://dx.doi.org/10.1021/acs.analchem.0c03301DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 spike
12
spike proteins
12
proteins signature
8
signature ions-triggered
8
ions-triggered electron-transfer/higher-energy
8
dissociation ethcd
8
ethcd mass
8
mass spectrometry
8
spike protein
8
ectodomain subunit
8

Similar Publications

Extracellular vesicles released by the protozoan parasite display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan towards the development of a vaccine adjuvant. As a proof of concept, we expressed in a codon-optimized SARS-CoV-2 Spike protein fused to the secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the emerging zoonotic respiratory disease. One of the most important prerequisites for combating emerging diseases is the development of vaccines within a short period of time. In this study, antigen-irradiated, inactivated SARS-CoV-2 viruses and the disaccharide trehalose were used to enhance immune responses in the Syrian hamster.

View Article and Find Full Text PDF

Expression, purification and immunogenicity analyses of receptor binding domain protein of severe acute respiratory syndrome coronavirus 2 from delta variant.

Vet Res Forum

December 2024

Institute of Pathogenic Microbiology, College of Biological Science and Engineering, and Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, China.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. The receptor binding domain (RBD), located at the spike protein of SARS-CoV-2, contains most of the neutralizing epitopes during viral infection and is an ideal antigen for vaccine development. In this study, bioinformatic analysis of the amino acid sequence data of SARS-CoV-2 RBD protein for the better understanding of molecular characteristics was performed.

View Article and Find Full Text PDF

Purpose: Omicron is a variant with the highest number of mutations among all Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) viruses, making whole genome sequencing (WGS) an essential tool for public health surveillance and molecular epidemiology. It is important to note that surveillance data can provide insights into the virus evolution and disease control. This study aims to provide an overview of WGS results for the SARS-CoV-2 Omicron Variant at Hasan Sadikin General Hospital Bandung.

View Article and Find Full Text PDF

The waning immunity following the COVID-19 vaccination become a significant concern and the immunological dynamics of vaccine-induced antibodies after vaccination need to be explored. The aim of this study was to compare anti-SARS-CoV-2 receptor-binding domain (RBD) antibody levels before and after a booster dose with heterologous COVID-19 vaccine and to identify factors influencing the levels after receiving the booster dose. A cross-sectional study was conducted in which individuals who received primary doses of CoronaVac and a booster dose with an mRNA-based vaccine were recruited using a purposive sampling technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!