A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reactive Oxygen Species and Inflammatory Responses of Macrophages to Substrates with Physiological Stiffness. | LitMetric

Reactive Oxygen Species and Inflammatory Responses of Macrophages to Substrates with Physiological Stiffness.

ACS Appl Mater Interfaces

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.

Published: October 2020

Macrophages play essential roles in innate immunity and their functions can be activated by different signals at pathological sites. Concerning changes in the rigidity of the microenvironment as a disease progresses, the influence of stiffened substrates on macrophage physiology remains elusive. In this study, to evaluate the effect of stiffened substrates on macrophages, we used J774A.1 cells as the macrophage model to investigate its mechanoinflammation responses using engineered polymeric substrates with various physiological rigidities (approximately 0.6 to 100 kPa). Under lipopolysaccharide (LPS) and adenosine triphosphate (ATP) stress, approximately 4-fold higher cytoplasmic reactive oxygen species (ROS) were triggered in cells on the softer substrate, compared with cells on the stiff substrates. The enhanced ROS response was found to be regulated mainly by NADPH oxidase. Moreover, mitochondrial ROS (mtROS), a crucial intracellular ROS source, are produced in response to substrate rigidity. The results showed higher mtROS production when cells were grown on a soft substrate with LPS/ATP stimuli, and the mechano-mtROS alteration was eliminated by Rho kinase inhibitor Y-27632. We suggest that substrate rigidity can coincide with LPS/ATP in regulating the ROS generation of macrophages. As a result of the pivotal role of ROS in regulating inflammation, increased NLRP-3 inflammasome formation and higher NO secretion (an approximately 300% increase) were observed with macrophages grown on soft substrates. Although no substantial genomic distinction was identified in our experiments, based on the phenotypic and functional results, softer substrates prime macrophages toward the proinflammatory (M1)-like phenotype. In summary, this study demonstrated the mechanosensitive inflammatory response of macrophages and the alteration of ROS, as secondary inflammation signals, may contribute to the functional status of macrophages. These findings not only provide an alternative interpretation of the functional transitions of macrophages influenced by substrate rigidity but may also support the manipulation of the inflammatory responses of macrophages via physical microenvironment modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c16638DOI Listing

Publication Analysis

Top Keywords

substrate rigidity
12
macrophages
10
reactive oxygen
8
oxygen species
8
inflammatory responses
8
responses macrophages
8
substrates physiological
8
stiffened substrates
8
grown soft
8
substrates
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!