Busulfan-based conditioning is the most commonly used high-dose conditioning regimen for allogeneic hematopoietic cell transplant (HCT). The alkylating agent busulfan has a narrow therapeutic index, with busulfan doses personalized to a target plasma exposure (targeted busulfan). Using a global pharmacometabonomics approach, we sought to identify novel biomarkers of relapse or acute graft versus host disease (GVHD) in a cohort of 84 patients receiving targeted busulfan before allogeneic HCT. A total of 763 endogenous metabolomic compounds (EMCs) were quantitated in 230 longitudinal blood samples before, during, and shortly after intravenous busulfan administration. We performed both univariate linear regression and pathway enrichment analyses using global testing. The cysteine/methionine pathway and the glycine, serine, and threonine metabolism pathway were most associated with relapse. The latter be explained by the fact that glutathione -transferases conjugate both busulfan and glutathione, which contains glycine as a component. The d-arginine and d-ornithine metabolism pathway and arginine and proline metabolism pathway were most associated with acute GVHD. None of these associations were significant after correcting for false discovery rate (FDR) with a strict cutoff of FDR-adjusted < 0.1. Although larger studies are needed to substantiate these findings, the results show that EMCs may be used as predictive biomarkers in HCT patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214873 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.0c00599 | DOI Listing |
Neurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFCurr Atheroscler Rep
January 2025
Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.
Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.
View Article and Find Full Text PDFAmino Acids
January 2025
Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Division of Internal Medicine, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, University of Milan, Piazzale Principessa Clotilde, 3, Milan, 20121, Italy.
Purpose Of Review: To outline the latest discoveries regarding the utility and reliability of serum biomarkers in idiopathic recurrent acute pericarditis (IRAP), considering recent findings on its pathogenesis. The study highlights the predictive role of these biomarkers in potential short- (cardiac tamponade, recurrences) and long-term complications (constrictive pericarditis, death).
Recent Findings: The pathogenesis of pericarditis has been better defined in recent years, focusing on the autoinflammatory pathway.
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!