There is a recognized need in the area of explosives detection for fluorescence-based sensing systems that are capable of not only producing a turn-on response but also generating a distinctive spectral signature for a given analyte. Here, we report several supramolecular ensembles displaying efficient fluorophore displacement that give rise to an increase in fluorescence intensity upon exposure to various nitroaromatic compounds. The synthetic supramolecular constructs in question consist of a tetrathiafulvalene (TTF)-based pyrrolic macrocycle, benzo-TTF-calix[4]pyrrole (Bz-TTF-C4P), and fluorescent dyes, monomeric or dimeric naphthalenediimide (NDI) and perylenediimide (PDI) derivatives, as well as chloride or hexafluorophosphate (PF) salts of rhodamine 6G (Rh-6G). In chloroform solution, these assemblies exist in the form of discrete supramolecular complexes or oligomeric aggregates depending on the specific dye combinations in question. Each ensemble was tested as a potential explosive-responsive fluorescence indicator displacement assay (FIDA) by challenging it with a series of di- and trinitroaromatic compounds and examining the change in fluorescence spectral characteristics. Upon addition of nitroaromatic compounds (NACs), either a "turn-on" or a "turn-off" fluorescent response was observed depending on the nature of the constituent fluorophore and, where applicable, the counteranion. The FIDAs based on the PDI derivatives were found to display not only a ratiometric fluorescence enhancement but also analyte-dependent spectral changes when treated with NACs. The NAC-induced fluorescence spectral response of each ensemble was rationalized on the basis of various solution-phase spectroscopic studies, as well as single-crystal X-ray diffraction analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c08106 | DOI Listing |
ACS Omega
December 2024
Experiment Research Center, Capital Institute of Pediatrics, Beijing 100020, PR China.
Invasive meningococcal disease, caused by (), is a critical global health issue, necessitating swift and precise diagnostics for effective management and control. Here, we introduce a novel diagnostic assay, NM-RT-MCDA, that combines multiple cross displacement amplification (MCDA) with real-time fluorescence detection, targeting a specific gene region in the genome. The assay utilizes a primer set designed for high specificity and incorporates a fluorophore-quencher pair with a restriction endonuclease site for real-time monitoring.
View Article and Find Full Text PDFMikrochim Acta
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
A novel glycoprotein assay was developed by integrating the hairpin aptamer (H-APT)-mediated glycoprotein recognition and the reactive oxygen species-sensitive microcapsule (ROS-MC)-induced signal amplification. The analyzing process begins with the transfer of the target glycoprotein to a chlorin e6 (Ce6)-labeled DNA sequence via H-APT-mediated DNA displacement. Subsequently, the Ce6-labeled DNA was used to induce the disassembly of fluorophore-loaded ROS-MC under 650-nm light irradiation.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal.
We present the development of an advanced sensing platform using a monolayer of graphene functionalized with fluorophore-labeled DNA hairpins to detect the kinetics of single hairpins during the hybridization reaction. The near-field photonic effects of graphene induce a distance-dependent quenching effect on the attached fluorescent labels, resulting in distinct optical signals in response to axial displacements resulting from DNA hybridization. Employing a wide-field Total Internal Reflection Fluorescence (TIRF) optical setup coupled with a sensitive Electron-Multiplying Charge-Coupled Device (EM-CCD) camera, we successfully detected fluorescent signals of individual or a low number of individual DNA hairpins within a low-concentration environment DNA target (tDNA).
View Article and Find Full Text PDFJ Physiol
December 2024
Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA.
GABA is the primary inhibitory neurotransmitter. Membrane currents evoked by GABA receptor activation have uniquely small driving forces: their reversal potential (E) is very close to the resting membrane potential. As a consequence, GABA currents can flow in either direction, depending on both the membrane potential and the local intra and extracellular concentrations of the primary permeant ion, chloride (Cl).
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Analytical, Environmental & Forensic Sciences, King's College London, London SE1 9NH, UK.
Blood is a common biological fluid in forensic investigations, offering significant evidential value. Currently employed presumptive blood tests often lack specificity and are sample destructive, which can compromise downstream analysis. Within this study, the development of an optical biosensor for detecting human red blood cells (RBCs) has been explored to address such limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!