An Integrated in silico Approach and in vitro Study for the Discovery of Small-Molecule USP7 Inhibitors as Potential Cancer Therapies.

ChemMedChem

Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, Bahcesehir University School of Medicine, Batman Sk. No: 66, Kadıköy, İstanbul, 34734, Turkey.

Published: February 2021

The ubiquitin-specific protease 7 (USP7) is a highly promising well-validated target for a variety of malignancies. USP7 is critical in regulating the tumor suppressor p53 along with numerous epigenetic modifiers and transcription factors. Previous studies showed that USP7 inhibitors led to increased levels of p53 and anti-proliferative effects in hematological and solid tumor cell lines. Thus, this study aimed to identify potent and safe USP7 hit inhibitors as potential anti-cancer therapeutics via an integrated computational approach that combines pharmacophore modeling, molecular docking, molecular dynamics (MD) simulations and post-MD free energy calculations. In this study, the crystal structure of USP7 has been extensively investigated using a combination of three different chemical pharmacophore modeling approaches. We then screened ∼220.000 drug-like small molecule library and the hit ligands predicted to be nontoxic were evaluated further. The identified hits from each pharmacophore modeling study were further examined by 1-ns short MD simulations and MM/GBSA free energy analysis. In total, we ran 1 ns MD simulations for 1137 selected on small compounds. Based on their average MM/GBSA scores, 18 ligands were selected for 50 ns MD simulations along with one highly potent USP7 inhibitor used as a positive control. The in vitro enzymatic inhibition assay testing of our lead 18 molecules confirmed that 7 of these molecules were successful in USP7 inhibition. Screening results showed that within the used screening approaches, the most successful one was structure-based pharmacophore modeling with the success rate of 75 %. The identification of potent and safe USP7 small molecules as potential inhibitors is a step closer to finding appropriate effective therapies for cancer. Our lead ligands can be used as a scaffold for further structural optimization and development, enabling further research in this promising field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202000675DOI Listing

Publication Analysis

Top Keywords

pharmacophore modeling
16
usp7
9
usp7 inhibitors
8
inhibitors potential
8
potent safe
8
safe usp7
8
free energy
8
integrated silico
4
silico approach
4
approach in vitro
4

Similar Publications

Small molecules targeting the eubacterial β-sliding clamp discovered by combined and screening approaches.

J Enzyme Inhib Med Chem

December 2025

Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.

Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets.

View Article and Find Full Text PDF

Energetics of substrate transport in proton-dependent oligopeptide transporters.

Commun Chem

December 2024

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

The PepT transporter mediates the transport of peptides across biological membranes. Despite advancements in structural biology, including cryogenic electron microscopy structures resolving PepT in different states, the molecular basis of peptide recognition and transport by PepT is not fully elucidated. In this study, we used molecular dynamics simulations, Markov State Models (MSMs), and Transition Path Theory (TPT) to investigate the transport mechanism of an alanine-alanine peptide (Ala-Ala) through the PepT transporter.

View Article and Find Full Text PDF

Isoindoline-1,3-dione, also referred as phthalimide, has gained recognition as promising pharmacophore due to the documented biological activities of its derivatives. Phthalimides are a family of synthetic molecules that exhibit notable bioactivity across various fields, particularly as anticancer and anti-inflammatory agents. This review focuses on syntheses and anti-inflammatory studies of the reported phthalimide derivatives.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetes is a significant global health issue that involves high healthcare costs and complex treatments, leading to the search for new medication options due to the side effects of current therapies.
  • Glucokinase (GK) plays a crucial role in regulating blood sugar levels and has unique properties that make it a good target for type-2 diabetes treatment; glucokinase activators (GKAs) can enhance GK activity, but safety concerns persist with existing options.
  • A study developed a new type of GKA using peptide-based compounds with unique amino acids, discovering three promising peptides that increase GK activity significantly; machine learning techniques were also employed to predict their effectiveness.
View Article and Find Full Text PDF

The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!