Metabolic rewiring and deregulation of the cell cycle are hallmarks shared by many cancers. Concerted mutations in key tumor suppressor genes, such as PTEN, and oncogenes predispose cancer cells for marked utilization of resources to fuel accelerated cell proliferation and chemotherapeutic resistance. Mounting research has demonstrated that PTEN-induced putative kinase 1 (PINK1) acts as a pivotal regulator of mitochondrial homeostasis in several cancer types, a function that also extends to the regulation of tumor cell proliferative capacity. In addition, involvement of PINK1 in modulating inflammatory responses has been highlighted by recent studies, further expounding PINK1's multifunctional nature. This review discusses the oncogenic roles of PINK1 in multiple tumor cell types, with an emphasis on maintenance of mitochondrial homeostasis, while also evaluating literature suggesting a dual oncolytic mechanism based on PINK1's modulation of the Warburg effect. From a clinical standpoint, its expression may also dictate the response to genotoxic stressors commonly used to treat multiple malignancies. By detailing the evidence suggesting that PINK1 possesses distinct prognostic value in the clinical setting and reviewing the duality of PINK1 function in a context-dependent manner, we present avenues for future studies of this dynamic protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067949 | PMC |
http://dx.doi.org/10.4103/1673-5374.295314 | DOI Listing |
Front Immunol
January 2025
Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
Cholangiocarcinoma is the second most common primary liver cancer, and its global incidence has increased in recent years. Radical surgical resection and systemic chemotherapy have traditionally been the standard treatment options. However, the complexity of cholangiocarcinoma subtypes often presents a challenge for early diagnosis.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking.
View Article and Find Full Text PDFSurg Pract Sci
September 2023
Division of General Internal Medicine, Northwestern University Feinberg School of Medicine, 750 N. Lakeshore Dr. 10th Floor, Chicago, IL 60611, United States.
Objective: This study analyzed inpatient mortality and length of stay for lung cancer surgery in Illinois hospitals by patient clinical and demographic characteristics, procedure types, and hospital and surgeon volume.
Methods: The study analyzed lung cancer patients who underwent lobectomy or sublobar resection at Illinois hospitals from 2016 to June 2022. Trends in procedure type, inpatient mortality, one-day length of stay (LOS), and prolonged LOS (>10 days) were evaluated.
Int J Nanomedicine
January 2025
Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Yantai Engineering Research Center for Digital Technology of Stomatology, Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Institute of Stomatology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
The metabolic activity of tumor cells leads to the acidification of the surrounding microenvironment, which provides new strategies for the application of nanotechnology in cancer therapy. Researchers have developed various types of pH-responsive nanomaterials based on the tumor acidic microenvironment. This review provides an in-depth discussion on the design mechanisms, drug-loading strategies, and application pathways of tumor acidic microenvironment-responsive nanodrug delivery systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!