Objective: The need for digital tools in mental health is clear, with insufficient access to mental health services. Conversational agents, also known as chatbots or voice assistants, are digital tools capable of holding natural language conversations. Since our last review in 2018, many new conversational agents and research have emerged, and we aimed to reassess the conversational agent landscape in this updated systematic review.
Methods: A systematic literature search was conducted in January 2020 using the PubMed, Embase, PsychINFO, and Cochrane databases. Studies included were those that involved a conversational agent assessing serious mental illness: major depressive disorder, schizophrenia spectrum disorders, bipolar disorder, or anxiety disorder.
Results: Of the 247 references identified from selected databases, 7 studies met inclusion criteria. Overall, there were generally positive experiences with conversational agents in regard to diagnostic quality, therapeutic efficacy, or acceptability. There continues to be, however, a lack of standard measures that allow ease of comparison of studies in this space. There were several populations that lacked representation such as the pediatric population and those with schizophrenia or bipolar disorder. While comparing 2018 to 2020 research offers useful insight into changes and growth, the high degree of heterogeneity between all studies in this space makes direct comparison challenging.
Conclusions: This review revealed few but generally positive outcomes regarding conversational agents' diagnostic quality, therapeutic efficacy, and acceptability, which may augment mental health care. Despite this increase in research activity, there continues to be a lack of standard measures for evaluating conversational agents as well as several neglected populations. We recommend that the standardization of conversational agent studies should include patient adherence and engagement, therapeutic efficacy, and clinician perspectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172347 | PMC |
http://dx.doi.org/10.1177/0706743720966429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!