A Novel Heterostructure Based on RuMo Nanoalloys and N-doped Carbon as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction.

Adv Mater

The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, China.

Published: November 2020

Heterostructures exhibit considerable potential in the field of energy conversion due to their excellent interfacial charge states in tuning the electronic properties of different components to promote catalytic activity. However, the rational preparation of heterostructures with highly active heterosurfaces remains a challenge because of the difficulty in component tuning, morphology control, and active site determination. Herein, a novel heterostructure based on a combination of RuMo nanoalloys and hexagonal N-doped carbon nanosheets is designed and synthesized. In this protocol, metal-containing anions and layered double hydroxides are employed to control the components and morphology of heterostructures, respectively. Accordingly, the as-made RuMo-nanoalloys-embedded hexagonal porous carbon nanosheets are promising for the hydrogen evolution reaction (HER), resulting in an extremely small overpotential (18 mV), an ultralow Tafel slope (25 mV dec ), and a high turnover frequency (3.57 H s ) in alkaline media, outperforming current Ru-based electrocatalysts. First-principle calculations based on typical 2D N-doped carbon/RuMo nanoalloys heterostructures demonstrate that introducing N and Mo atoms into C and Ru lattices, respectively, triggers electron accumulation/depletion regions at the heterosurface and consequently reduces the energy barrier for the HER. This work presents a convenient method for rational fabrication of carbon-metal heterostructures for highly efficient electrocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202005433DOI Listing

Publication Analysis

Top Keywords

novel heterostructure
8
heterostructure based
8
rumo nanoalloys
8
n-doped carbon
8
hydrogen evolution
8
evolution reaction
8
heterostructures highly
8
carbon nanosheets
8
heterostructures
5
based rumo
4

Similar Publications

An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.

View Article and Find Full Text PDF

Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.

View Article and Find Full Text PDF

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Recent studies have demonstrated the ability to switch weakly coupled interlayer magnetic orders by using electric polarization in insulating van der Waals heterostructures. However, controlling strongly coupled intralayer magnetic orders remains a significant challenge. In this work, we propose that frustrated multiferroic heterostructures can exhibit enhanced intralayer magnetoelectric coupling.

View Article and Find Full Text PDF

Three-dimensional CeO Nanosheets/CuO nanoflowers p-n heterostructure supported on carbon cloth as electrochemical sensor for sensitive nitrite detection.

Anal Chim Acta

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:

Nitrite is widely used as a food additive, and it is of great significance to realize accurate detection of nitrite for food safety. Electrochemical technique is characterized by simple operation and portability, which enables rapid and accurate detection. The key factors affecting the nitrite detection performance are the electrocatalytic activity and interfacial electron transfer efficiency of the electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!